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The A-B-C’s of fast Z-pinches:

Kinetic & electrical energy
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Z Machine - Fast switching (~100 ns) of ~ 11 MJ stored energy to produce ~ 20 MA currents;
resulting X-ray pulse of ~ 2 MJ or more, in 5 - 10 ns (FWHM), with peak radiating power of 300 TW or
more; temperatures of ~ 150 eVina*“ primary ” hohlraum.
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Wire arrays are the key to the radiative output:

~1lcm

300 tungsten wires, 11.4 pum
individual diameter

~ 2 cm diameter, 1 cm axial
length

~ 120 TW peak power for the
Z189 and Z190 experiments

~ 140 eV peak radiation
temperature in the primary
hohlraum
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Why pursue EOS experiments on the Z machine?

Very high pressure shock waves can be generated.

There is a large amount of x-ray energy available:

« We can work with larger sample sizes, which eases diagnostic
accuracy burdens

» There is the possibility of “staging” this energy creatively, for
applications such as off-Hugoniot (isentropic) loading, and for
launching flyer plates. We do this in a simple way through the
use of “ secondary " hohlraums.

Time-resolved diagnostics applicable to EOS measurements might
have wider utility as complementary Z-pinch diagnostics.

» Of particular concern here is measurement of radiative drives

* Have also begun to evaluate these diagnostics to determine
magnetic pressures in primary hohlraums
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“Typical” EOS experiments are performed in

“tangential” secondary hohlraums.

Imploding Primary
Z-pinch hohlraum
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Z189 - 0.6 cm; Z190 - 0.8 cm “cool” side

Two secondary hohlraums per
experiment - VISAR and fibre-optic
shock breakout measurements.

6.28 um (Z189) and 1.83 pum (Z190)
Parylene-N burnthroughs (leveraging
work of Chrien, et al)
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We are using ALEGRA to suggest payloads and
analyze experiments for the EOS program.

ALEGRA is a 3-D multi-material finite
element-based ALE code.

One intended application is to fundamental
studies of Z-pinches and their applications:

* 3-D parallel MHD
» 3-D parallel multigroup diffusion
» Execution on ASCI hardware

The present calculations are performed using “1-D” hydro and the SPARTAN SP N

rad-transport package (Morel and Hall, LANL). This combination of capabilities is
called ASP ( ALEGRA-SPARTAN). A multigroup diffusion package developed by
Budge is also now being applied.

We are working to “validate” a physics package - radiation transport - which must
become integral with the MHD at some point.
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We are exploring simple payloads for simple
development experiments using ALEGRA-SPARTAN.

Basic Geometry

* Symmetry
T (t) //I///////
R luminum
/Berylllum *
Symmetry
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Use Sesame EOS tables.

Opacities are calculated using an unclassified XSN
model. Typically, we use 20 groups over the range
0.1 eV to 6.0 keV for such drives.

Pressure

Time

Use of Hugoniot conditions
requires steady wave:

P = pgUgu
pOUS = p(US_up)

Potential for “shaping” the pressure pulse
via more complex payloads: Al/Be, CH/Be,
more elaborate alternating impedance
layers for plate launch.
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We predict early time motion in the absence of
burnthrough folils, although details of the “foot” of
the drive may be difficult to measure.

The nominal source is based on shot Z91 primary

hohlraum diagnostic, but the first 80 ns (below 30 S+ A :
eV) is simply guessed. x-t diagram for aluminum

under the nominal drive.
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Shock wave propagation for a nominal source (130
eV peak) in beryllium and aluminum (note the
pressures).
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We know of no unclassified wedge or step data that We have one set of wedge shot data that provides some
gives us some feeling for whether or not these validation for our calculation of rad-hydro shocks in

calculations are wrong or right. aluminum.
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Predicted peak pressures versus depth for the
nominal drive allow fine tuning of the diagnostic.
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We are most concerned with avoiding depths where attenuation is most extreme.

We also, of course, do not want to be stupid and perform a measurement in the
ablation region without realizing it.
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One simple way to influence the pulse is to use
ablators.

100 um S0 Hm ASP pressure scaling at high Z

does not agree with Brand X.
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We have some confidence in the application of ASP:

NOVA wedge shot comparison.
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See LindI’s review, Phys. Plasmas, 1995, Vol. 2, No. 11, 3933

We are not trying to do what this data was used for on NOVA, which was to
contribute to a self-consistent prediction of the drive for a NOVA hohlraum.
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Shots Z189 and Z190 were the first shock wave
experiments on the Z machine that produced decent

VISAR data.
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For these experiments,
this is not an
axisymmetric package. A
sample such package is
suggested below.
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The drive characterization is the greatest uncertainty
In this analysis.
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The difference in peak drive temperatures can be
accounted for simply by the increase in volume of the
secondary hohlraum in shot Z190.
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Z189 t-x diagram and diagnostic pressures:
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t-x diagram showing Predicted pressures at
diagnostic locations. diagnostic locations.
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Z189 calculation - experiment comparisons:
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Particle velocity non-peak error bars for
Z189A are smaller than the symbols.
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Z190 t-x diagram and diagnostic pressures:
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t-x diagram showing
diagnostic locations.

Predicted pressures at
diagnostic locations.
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Z190 calculation - experiment comparisons:
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Particle velocity non-peak error bars for
Z189A are smaller than the symbols.
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There are a lot of secondary hohlraum possibilities.
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(a la M. Douglas)
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Where is this work going?

First, start using the multi-group diffusion package (this is our path

to 3-D, massively parallel rad-hydro).

Second, get the VISAR diagnostic working effectively in the Z
environment.

Third , apply a more rational basis for secondary hohlraum design:

- 3-D view factor plus simple energy/flux balance
- LASNEX (?) for 2-D approximate hole closure calculations

- Would like to do 3-D hole closure calculations

- Worried about non-uniform illumination and the low-temperature run-in
Fourth , start gathering and using data:

- Obvious EOS interest (Beryllium - July or August)

- Data for rad-hydro validation appropriate for Z machine work

- Possibility of using VISAR data to diagnose the low temperature run-in

Fifth , start thinking about “complex” pulse shaping for isentropic
loading and launching flyer plates. (Jeff Lawrence)
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