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Abstract

In this combination background and position paper, we argue that careful work is needed 
to develop accurate methods for relating the results of fine-scale numerical simulations of 
material processes to meaningful values of macroscopic properties for use in constitutive 
models suitable for finite element solid mechanics simulations. To provide a definite 
context for this discussion, the problem is couched in terms of the lack of general objective 
criteria for identifying the size of the representative volume (RV) of a material. The 
objective of this report is to lay out at least the beginnings of an approach for applying 
results and methods from statistical physics to develop concepts and tools necessary for 
determining the RV size, as well as alternatives to RV volume-averaging for situations in 
which the RV is unmanageably large. The background necessary to understand the 
pertinent issues and statistical physics concepts is presented.
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Executive Summary

Brief summaries are presented of effective medium theory for elastic composites an
statistical physics topics of critical phenomena and percolation models. These provi
background for a discussion of determining the size of the representative volume (R
composites. The aim is to determine inelastic effective properties to use in macroscopic 
material models by averaging over the RV. This method of homogenization of a 
heterogeneous continuum is just one instance of length scale bridging. By making a
analogy between statistical continuum mechanics and statistical physics, we identify
principle on which to base determination of the RV size for inelastic effective propert
namely, that effective property values determined as volume averages over an RV a
nearly independent of the boundary conditions (BCs) on the RV. (For the volume ave
to be meaningful, the BCs considered are required to be macroscopically uniform.) T
principle implies a direct, trial-and-error method for determining the RV size once the 
quantity is identified whose average provides an inelastic effective property of interes
go on to explain the notion of correlation length because its determination presents 
possibility for reducing the trial-and-error search for the RV size by a single direct 
calculation. Numerical investigations to test the ideas developed here are outlined a
end of this report.
vi
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Representative Volume Size: A 
Comparison of Statistical Continuum 

Mechanics and Statistical Physics

John B. Aidun, Timothy G. Trucano, David C. S. Lo, Richard M. Fye

Sandia National Laboratories, New Mexico 87185-0443

Preface

The overall objective of our investigations of the concepts and tools of equilibrium
nonequilibrium statistical physics is to develop techniques and understanding that w
low us to address problems encountered in modeling the macroscopic thermo-mechanical 
behavior of materials that are heterogeneous on the mesoscopic scale, a fine scale continu
um that is still much larger than the atomic scale. The application for such material m
is in numerical solid mechanics simulations for which the spatial discretization length
larger than the mesoscopic scale.

Bridging the length and time scales between mesoscopic properties and process
macroscopic simulations is an important step in the development of predictive comp
tional solid mechanics simulations. Among the material modeling problems that our 
may help with is developing fracture criteria, which are the rules governing the magn
and direction of the incremental growth of a macroscopic crack in a solid mechanics
ulation. Identifying fracture criteria that are based on mesoscopic (microstructural sc
thermo-mechanical mechanisms is a key problem in developing predictive solid mech
simulations.

The present inquiry is preliminary work concerned with several generalities relat
bridging between scales and with the basis of a common method for linking mesosc
processes to macroscopic behavior - namely, averaging the mesoscopic details ove
resentative volume. Accordingly, there is little mention of fracture in this report. Neve
less, the region near the tip of a macroscopic crack is inherently a nonrepresentative
ume. Our consideration of what can be done when the representative volume is too l
preliminary to addressing in the future how to treat the crack tip region at the macros
scale. Beyond this we note that percolation theory recently has been extensively inve
ed as a model for fracture in disordered materials. That a percolation model might re
aspects of the collective behavior of microcracks makes the current project’s pursuit o
cepts from statistical physics and critical phenomena an additional contribution to th
ticipated follow-on investigation of cracking.
1
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1. Introduction

There is increasing interest within Sandia National Laboratories (SNL) and throug
the DOE weapons laboratories to develop numerical simulation capabilities that can
stantially augment laboratory testing and can be used in assessing device reliability. 
context it is important to appreciate that the macroscopic quantities required to predic
momechanical material response cannot always be calculated accurately at the mac
ic continuum scale. In the absence of a sufficient quantity and variety of experiments
quantities need to be calculated by directly simulating the micromechanical processe
underlie them. Using micromechanical simulations to determine values of macrosco
quantities requires bridging - i.e., rigorously relating - their disparate length and time 
scales. Classical approaches for bridging length scales posit the existence of a “represen-
tative volume” (RV) - a volume over which simple volume averaging of the properties
responses of the constituent phases provides a useful description of the overall therm
chanical response of the heterogeneous material. This motivates the question: “How can the 
size of the RV be determined for a material whose macroscopic response is calcula
simulating micromechanical processes?” A natural subsequent question is then: “How can 
the results of microstructural scale simulations be related to macroscopic quantities w
volume averages over an RV are not feasible?” The purpose of this report is to review th
basic results from effective medium theory (EMT), the theory of determining characteris
tic overall properties of composites (heterogeneous continua) and discuss fundamen
ilarities of EMT to the modern view of statistical mechanics. These both contribute to
most basic purpose, that of identifying an approach for developing a direct means of
mining the RV size. For clarity the term "statistical physics" will be used instead of "sta-
tistical mechanics" to refer to the averaging of microphysics phenomena. This will d
guish it from "statistical continuum mechanics" (SCM), which refers to the averaging o
micromechanics phenomena. Though much of the discussion is general, our intend
plication is to numerical simulation of the thermomechanical response of solids.

(A note on terminology: Micromechanical processes are those occurring on the m
structural scale, which is finer than the homogenized continuum or finite element mes
olution but is large enough to be treated as a heterogeneous continuum. Here “micr
ture” refers to any heterogeneities in the continuum, not only to the crystal grain stru
It is usual that microstructural scales in continua are much larger than atomic scales
this reason these scales are often referred to as “mesoscopic” rather than “microscopic.”)

The application of interest to SNL that concerns us here is using numerical simula
of microstructural-level processes to generate synthetic constitutive data. The simul
data provide the basis for constructing or extending a macroscopic material model th
be used in standard finite element method (FEM) simulations of solid mechanics. Resta
ed, we seek to use the numerical simulation results to determine the equilibrium, ma
scopic thermo-mechanical properties of a homogeneous effective medium whose response
is the same as the RV-averaged response of the simulated material. (The additiona
culties of determining nonequilibrium quantities are commented on later.) As explaine
low, it is only for regions as large or larger than the RV that an EMT can provide an 
rate description of macroscopic thermo-mechanical response. Adopting a numerical
proach to homogenization largely obviates assumptions about the distribution of 
2
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heterogeneities and the nature of their interactions because it is able to treat a wide
of realistic distributions and interactions. This capability is the main advantage of dete
ing bulk material properties from mesoscopic numerical simulations. However, this v
tility also makes identifying the size of the RV a necessity: The simulated system must be
as large as the RV for the simulation results to provide overall responses that are re
tative of macroscopic constitutive behavior. Because the simulated materials will be 
ogeneous on the mesoscopic scale, they will be referred to, in general, as composites.

Given that homogenized descriptions of the response of heterogeneous materia
commonly used in continuum mechanics, it is worth explaining why RV size in nonpe
ic materials is rarely determined, if ever. A typical SCM treatment defines densities a
ume averages over a hypothetical but unspecified RV. These densities are then use
though they were truly thermodynamic quantities. This type of micromechanics deve
ment is carried out without regard to the size of the RV on the basis of assuming a un
distribution of heterogeneities and that their mutual interactions are either negligible (d
concentration case) or self-consistent (mean-field case). The resulting theoretical pr
tion is internally consistent, but its validity is limited to regions equal in size to the RV
larger. Hence determining the RV size should actually be part of the application of this type 
of SCM result. Situations intermediate to these limiting cases are of greatest concer
specific determination of the RV. That the RV size is not determined for these applica
points out the potential danger that an RV-based method can be applied inappropria
when the RV is larger than the macroscopic volume of interest, if it exists at all. With
explicitly identifying the RV size, it may not be evident that a classical scale-bridging
method is without a sound basis and that predictions based on the resulting material
are incorrect. This unsatisfactory situation exists because there is no objective definit
set of criteria for establishing that a chosen averaging volume in a nonperiodic mate

actually an RV.1 

Relating the mesoscopic details of geometry, properties, and deformation proces
average mechanical properties of a macroscopically heterogeneous material is a ce
pursuit of statistical continuum mechanics (SCM). This averaging problem appears h
analogous to the averaging problem of statistical physics. Here we use statistical phy
a guide to clarifying the meaning of macroscopic effective properties of a heterogen
continuum. Whether statistical physics also provides a guide to determining values o
roscopic effective properties of composites requires further comparison and consider
which is begun in this report. Identifying similarities between statistical physics and S
is useful for providing a unified conceptual framework in which to view the two averag
problems. It is hoped that this will be of additional use in leading to practical solution
cedures in one or both of the disciplines, based on approaches used in the other.

The ultimate goal of statistical physics is understanding how continuum physics
manifestation of the behavior of a dynamic system of a very large number of microsc
interacting particles occupying a volume very much larger than the particle dimensio
particular, equilibrium statistical physics determines how to compute the densities of
roscopic mechanical quantities - i.e. any extensive quantity per unit volume - that app
equilibrium thermodynamics theory as averages over the motions in a system of ma
atomic-scale particles. This provides the justification of equilibrium thermodynamic th
3
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for homogeneous systems as well as for macroscopically heterogeneous systems th
not too far from equilibrium. A heterogeneous body is regarded as comprising many s
macroscopic volumes that are homogeneous and in equilibrium with the local condit
In each small volume equilibrium thermodynamics is taken to govern the densities o
modynamic variables. The overall behavior of the macroscopic body is given by ma
scopic phenomenological dynamical relations that describe the changes of the therm
namic densities. Examples are reaction-diffusion equations and continuum momentu
equations. The dynamical behavior of such a heterogeneous body is assumed not to
the underlying assumptions of local thermodynamic equilibrium. 

The application of statistical physics to describe nonequilibrium macroscopic process
es - i.e., to derive the continuum equations of motion from the dynamics of a system
many particles - is an area of current research. Being able to describe nonequilibriu
cesses is a goal of our investigations, but it will take much effort to accomplish. While s
discussion is given below of the additional complications that occur when treating no
equilibrium phenomena, the scope of this report is largely limited to equilibrium prope

In the next section the RV is defined as the minimum volume of material for which
overall properties are independent of boundary conditions. Boundary condition indepen-
dence (BCI), the insensitivity of average property values to the choice of allowed BC
argued to be appropriate and sufficient for defining the RV for time-independent prope
because it is the essential aspect of what is meant by material property. BCI provides
ceptual link to bulk property determination in statistical physics. This connection is d
cussed in the third section. In Section 4 key results of EMT are summarized and the im
formal procedure for identifying the RV size is given. This leads into the discussion o
tablishing a practical procedure for identifying the RV size in Section 5. There it is no
that BCI should be strongly influenced by the geometrical configuration of the hetero
ities in the volume. Thus the task is to identify which aspect of the internal geometry i
and how to determine when it reaches a state that provides BCI. Because of its physi
nificance, the correlation length is a low-order measure of a statistical distribution tha
potentially useful quantity to use to express the criteria that the internal geometry m
meet for volume averages to be BC independent. To illustrate its physical meaning,
aspects of critical phenomena and the theory describing it are presented in Section 6
descriptions of the scaling hypothesis and percolation theory are also presented in th
tion along with a discussion of the possible relevance of critical phenomena to micro
chanical modeling. The initial study that will be pursued to begin investigating the iss
and possibilities raised in this report is outlined in Section 7.

2. Boundary Condition Independence of RVs

We begin with Hill’s characterization of a representative volume:2 

“This phrase will be used when referring to a sample that (a) is structurally 
entirely typical of the whole mixture on average, and (b) contains a suffi-
cient number of inclusions for the apparent overall moduli to be effectively 
independent of the surface values of traction and displacement, so long as 
4
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these values are ‘macroscopically uniform.’ That is, they fluctuate about a 
mean with a wavelength small compared with the dimensions of the sam-
ple, and the effects of such fluctuations become insignificant within a few 
wave-lengths of the surface. The contributions of this surface layer to any 
average can be made negligible by taking the sample large enough.”

It is understood that the volume-averaged (“overall”) properties of the RV are the de
effective properties of the hypothetical equivalent homogeneous material. Hill’s chara
ization is notable both for being one of the first and for being possibly the only one th
includes near independence of the average properties from the boundary conditions
(b)] as fundamental to the RV. For the two reasons that follow, we take the sole defi
feature of the RV to be the independence (to some prescribed precision) of the volu
erage properties from the boundary conditions. First, BCI is the essence of what is m
by “material property.” In application the properties of a material are taken to have va
that are fixed or possibly depend on local mechanical field variables, and these valu
be used to calculate the response of a sample of that material to any possible bounda
ditions. Aspects of a specimen that do depend on boundary conditions are structura
erties, not material properties. Second, the structural similarity referred to in part (a)
Hill’s characterization is both unneeded and overly restrictive for defining the RV, as
plained next.

Several other workers who have made substantial contributions to the averaging
lem of SCM hold part (a) of Hill’s characterization, alone, to be the defining feature o

RV; However, they elaborate on it further1,3-7or make due with an imprecise characteriz

tion.8 The structural similarity of the RV to an arbitrarily large volume of the composit

referred to as statistical uniformity 1 or statistical homogeneity.8 It is an undesirable con-
straint because it is a restriction on the composite material as a whole as well as on th
If a composite is statistically homogeneous, then this characterization implies that th
can be identified as the minimum volume for which the statistical description of the g
metrical heterogeneity is, for practical purposes, indistinguishable from that of a very 
larger sample of the composite. This implication is clear, and it suggests an approac
identifying the RV is to evaluate the variation of some measure of the heterogeneity
sample size. However, as discussed in the introduction, the RV size is never actually
mined in theoretical treatments. One reason statistical homogeneity is often required
oretical developments of effective properties is that when it holds, volume averages
the RV, or any larger volume, equal ensemble averages. The equality of these aver
called ergodicity, allows the tools of ensemble theory from statistical physics to be app

to the problem of determining effective material properties of composites.1,5,7

(This notion of ergodicity is an analog of the notion originally developed in statist
physics, where the ergodic hypothesis asserts the equivalence of time averages and

ble averages.9 Ergodicity in statistical physics was long believed to be necessary for a
crophysics system to achieve thermodynamic equilibrium, which is a special kind of s
tical uniformity. This is why the concept of ergodicity is appealing in the problem of e
tive properties in SCM. In this light it is interesting to note that in modern statistical 
physics, it is understood that ergodicity is not prerequisite for the establishment of th
5
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dynamic equilibrium. Conservative Hamiltonian systems that are fully integrable can b

godic.10,11 It is now understood that thermodynamic equilibrium and macroscopic irrev
ibility arise from the phase space mixing behavior of nonintegrable conservative Ham

nian systems.10,11 Mixing, in turn, arises from deterministic mechanics in systems tha
exhibit a sensitive dependence on initial conditions and, consequently, tend to becom
otic. So it is that the analogy to statistical physics used to treat the averaging proble
SCM has become outdated. It would be interesting to consider whether a new, more 
analogy might be developed based on current statistical physics understanding.

Statistical homogeneity is unneeded because it is not essential to the meaning o
terial property, and it can be dispensed with because it is unrelated to BCI. The valu
material property can vary over macroscopic distances and still be well-defined locall
the macroscopic scale), according to the criterion of BCI. Statistical homogeneity co
strains the value of a material property from having any spatial variation. This constra
clearly not essential to the meaning of effective material property. Indeed it is unwan
restriction on what is meant by effective material property. In addition we note that en
bles are merely a tool in statistical physics that does not add to our understanding o

fine-scale properties and processes are manifest in overall response.10 Ensemble averages

have no strict meaning in any one sample;1,10 yet we need to treat individual samples if w
are to understand the relation of the fine scale to macroscopic properties in both sta

physics10 and SCM.

Hill’s restriction to macroscopically uniform boundary conditions deserves comm
regarding both the determination and the use of effective material properties. First, macro
scopically uniform loading is typically used in determining material properties, even in
mogeneous materials, because their use simplifies relating the measured response o
imen to a material property. Also it seems reasonable to expect it to be possible to o
BC-independent overall properties only for macroscopically uniform loadings. Second
implied restriction to using effective properties only in describing the response to ma
scopically uniform loading is easily understood by analogy with the “material point” of
continuum in an actual homogeneous material. The RV should be understood to be
smallest volume of the composite material that can be treated as a homogeneous c
um. In this sense, the RV is analogous to the continuum material point, which is the 
est volume of the material that can be regarded as a continuum. As such all features
continuum material point, the material property values and the field variables, must b
tially uniform (cf. Ref. 12, p. 1; Ref. 8, p. 38). The continuum description is accurate 
when the loading produces no significant gradients over the dimensions of the conti
material point.

For example, the homogeneous material cannot be treated as a continuum to de
its response to very high frequency vibration. Accurately describing this loading invo
the vibrational modes of the discrete lattice. Similarly the response of a body compos
a composite material can be accurately described as though it were composed of th
mogenized material only if the mechanical fields are uniform over volumes the size o
RV. This is achieved by loading that is macroscopically uniform over distances compa
to the linear dimension of the RV. That is, effective property values can be used to de
6
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the response of a body composed of the heterogeneous composite only when the loa
sensibly constant over distances comparable to the linear dimension of the RV. Tho
spatial variation of effective property values needs to be accommodated, the effective
erties should be nearly constant within regions comparable to the RV size for the res
to be accurately described by that of a nonuniform homogenized material. So it is us
and appropriate to regard the RV as a very large continuum material point for the ficti
homogenized material. The requirement for macroscopically uniform BCs restricts th
lowed BCs to the specification of a uniform traction or displacement vector on each p
coordinate faces of the body.

Next we ask the question, “Should we expect that an RV exists?” In other words
should we expect that for a sufficiently large volume, the overall properties of the ma
become nearly independent of boundary conditions? We know that RVs exist for som
terials. For example, fine grained, polycrystalline, structural metals are well describe
homogeneous, isotropic materials for many practical applications; but, in general, th
istence of an RV is an empirical question. It can only be answered by observing the b
ior of a composite material under the relevant conditions. Furthermore, we should a
pate that whether an RV exists and its particular size are dependent both on the prop
interest and the accuracy required by the application at hand. Nonetheless, it may be
ble to enumerate classes of micromechanical behavior that are compatible with exis
of an RV. 

For a material that has an RV, we ask: “What is it that makes the overall properti
the RV BC independent, whereas those of any smaller volume are not?” The contra
property values of the constituents of a composite has been demonstrated by numeric

ulation to effect the RV size of an elastic composite.13 We expect this dependence to persi
for inelastic composites response as well, but for a given composite, we presume th
effect of the contrast in the constituent’s property values only determines a scale facto
property value contrast is thus assumed to be a parameter and, consequently, BCI in 
composite is taken to only involve aspects of the statistical description of the interna
ometry the shapes, configuration, and spatial distribution of the heterogeneities. Thi
sumption provides some guidance for developing a direct method of determining the
size, rather than a trial-and-error search for a volume that provides nearly BC-indepe
average values. This is pursued further in Section 5.

3. Bulk Properties in Statistical Physics

3.1 Macroscopic Equivalence

In applying statistical physics to understand most continuum phenomena, the ta

amounts to evaluating the bulk properties of a material.14 Based on the observation of lo-
cality (also known as “local action”) in macroscopic continua - i.e., that the values of den-
sities at a given spatial location are determined solely by the environment at that loca

Balescu argues for adopting locality as a principle of statistical physics theory.14 This prin-
ciple is equivalent to requiring that properties of the macroscopic system be independent of 
7



Aidun et al. 3. Bulk Properties in Statistical 

t 

 un-
ng 
ity, , 

ot too 

flu-
s the sur-

pical-
ap-

ically 

ntly 

, aris-

ke little 
s. (1) 
moval 

able 
. 

rily 

r rela-
n or 
nder 
s over 
ody-

t as 
als that 
mics 
boundary conditions. Formally, this is expressed by the principle of macroscopic equiv-
alence.14 Consider the value, , of some material property density - i.e., a material quan-

tity per unit volume - for a sequence of system volumes, , that increases withou

bound. The members of the sequence are successively enlarged systems that leave
changed the local conditions at equivalent locations within the different systems. Requiri
macroscopic equivalence restricts the system size dependence of the intensive quant

to have the form

. (1)

  is the bulk value common to any macroscopic system in the class, provided it is n

small. The remaining contribution to  has a volume dependence arising from the in
ence of the system boundaries. Because this source of size dependence decreases a
face-to-volume ratio decreases, its volume dependence has the limiting behavior

 as . (2)

The systems having a common bulk value of a property are said to be “macrosco
ly equivalent.” The goal is to determine the bulk value, . Once it is known, it is the 

propriate value of  to use to describe this material property for any of the macroscop

equivalent systems. Let  denote the value of the index for which  is sufficie

close to . This means that we do not have to specifically treat the correction, 

ing from BCs because the system volume is large enough that the surface effects ma
contribution to the value of the intensive quantity. This is to say that according to Eq
and (2), which are consequences of the principle of macroscopic equivalence, the re
of size effects corresponds to BCI.

The bulk value is often most amenable to determination in the physically unobtain
thermodynamic limit  because it automatically removes boundary effects so that 

This is the limit in which the size and number of particles in a system become arbitra

large while maintaining a constant particle concentration:9,14 

, and  with constant. (3)

From this description it should be understood that to state that some condition o
tion holds “in the thermodynamic limit” is a shorthand way of saying that the conditio
relation is satisfied by the BC-independent bulk value of the property or properties u
consideration. Unambiguous values or expressions for densities in terms of average
microscopic quantities are obtained by rigorous mathematical evaluation of the therm
namic limit. In statistical physics we know that nearly BC-independent averages exis
these are simply the macroscopic mechanical properties of the homogeneous materi
are described by thermodynamics. Not all quantities fit this description. Thermodyna

λ
vk{ }

λk

λk vk( ) Λ λ̂k vk( )+=

Λ
λ

λ̂k vk( ) 0→ vk ∞→

Λ
λ

k κ= λk

Λ λ̂κ vκ( )

λκ Λ≈

v ∞→ N ∞→ N
v
----=
8



Aidun et al. 3. Bulk Properties in Statistical 

rather 

r 

ac-
ainer 

ffects. 

r mac-
nsider 

to be 

ently 

deter-
 until 

k sys-
ngth 

ion of 
ndent 
sam-
at a 
s cor-

of sev-

owing 
pend 
s than 

creas-

led 

y-
is the 

es in 
ysics 
 for 

to 
porting 
scrip-
 be 
 prob-
is also concerned with thermal quantities which are related to the state of a system 

than to averages of microphysics variables.14 Also macroscopic properties do not exist fo

all systems.14 Balescu gives as examples thin films, for which one dimension is not m
roscopic, and ultradilute gases, in which nearly all particle collisions are with the cont
walls so the entire macroscopic behavior is due to boundary conditions alone.

 There is one other size dependence to  in addition to that arising from surface e

This is that the system be sufficiently large for  to have the same value as any large
roscopically equivalent system. To understand the cause of this size dependence, co
a practical determination of the value of  for a finite-sized system. Namely, take  

the average of the quantity, , over a region in the interior of the system that is suffici

distant from the surfaces to be insensitive to the BC on the system. The value of  
mined in this way will depend on the size of the region over which the average is taken
the minimum linear dimension of this region exceeds the correlation length of the bul
tem. As explained below in Section 6, the correlation length, , is the characteristic le
of the bulk system. It is a measure of the range over which the response in one port
the system is strongly related to that in another portion of the system. A size-indepe
bulk value is not obtained until the averaging region is sufficiently larger than  that it 
ples largely independent portions of the bulk system. In Section 6 it is also shown th
correlation length characterizes the range of influence of the surface conditions. Thi
relation length possibly is a different one than for the bulk system.

The expression for stress in a system of discrete particles provides an example 
eral of the points made in this section. This is presented in the appendix.

For nonequilibrium systems the concepts presented above are applied in the foll
way. The locality principle is taken to be that the rates of change of the densities de
only on the local conditions. Equations (1) and (2) are assumed to be true for times les
some characteristic time, which is taken to increase without bound as the volume in

es.14 Finally, the analog of the thermodynamic limit for nonequilibrium systems is cal

the hydrodynamic limit ;15 however, it applies equally to solids and fluids. The hydrod
namic limit takes the time scale into consideration and is much more complicated. It 
subject of highly technical current research.

 3.2 Comparison of Statistical Physics and SCM

It is interesting that BCI is the essential requirement for determining bulk properti
both statistical physics and SCM. However, this is in part by design. The statistical ph
explanation of what is meant by “macroscopic bulk property” provides the framework
characterizing the relation of the properties of an effectively homogeneous material 
those of an underlying heterogeneous medium. Thus, the arguments in Section 2 sup
taking BCI as the defining feature of the RV were guided by the statistical physics de
tion of the bulk value of a material property. The similarities and differences need to
considered further if we are to learn something from the comparison of the averaging
lems in SCM and statistical physics.

λ
Λ

Λ Λ
λ

Λ

ξ

ξ
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The formal description of the bulk value of a material property for a macroscopic
large microphysics system given by Eqs. (1) and (2) at first appears incompatible wit
notion of effective properties of a heterogeneous continuum developed in Section 2. 

Balescu does require a minimum system size,14 this does not seem to be the RV in the sen
of Section 2 because the BC-independent bulk value is formally achieved only in the
nite volume limit and not for the minimum allowed system size. (Indeed, Balescu’s in
tion in setting a minimum size requirement for  is not entirely clear.) Making an exp
analogy from the statistical physics description given by Eqs. (1) and (2) to SCM migh
one to conclude that BC-independent averages should not be expected for any volu
composite but that the bulk value should be determined in the fictitious infinite volume
it and then used as the value for the material property for finite composite systems.

As a practical matter the discrepancy between the two disciplines is not so seve

When the sequence of systems in Eq. (1) converges quickly, as is often the case,14 surface 
effects can already be negligible for Balescu’s minimum size for a macroscopically e
alent system. In this case the minimum-sized, macroscopically equivalent system ca
consistently interpreted to be the continuum material point. Consequently, the system
at which the material property is equal to the bulk value, within the desired precision
completely analogous to the RV in SCM as characterized in Section 2.

This discussion identifies a sense in which the statistical physics and SCM char
izations of material properties are compatible. As a consequence, it suggests that th
value or effective property value can be obtained by considering the fictitious infinite
ume case and then used as the value of a material property for systems of any size
than some minimum - namely, the RV. However, it is unlikely to be practical to numer
ly determine effective properties of a heterogeneous continuum from the infinite-size
tem. Moreover, such an approach for a heterogeneous continuum still requires ident
the RV size, which is to be taken as the minimum system size that Balescu stipulate

Another difference from between the two disciplines is that the statistical physics 
acterization of macroscopic material properties is more general than the SCM charac
tion of effective material properties in that it applies equally to any macroscopic field 
able. The bulk value is to be taken as the macroscopically local value of a macroscop
nonuniform field. The restriction that the fields have negligible variation over some m

mum microscopic volume is not stated14 but is, perhaps, implicit in the concept of macr
scopic fields. This is worth further consideration in the context of specific application

Differences between the systems treated in the two disciplines may be critical to 
lishing an analogy between statistical physics and SCM. In statistical physics system
linear size of the molecular constituents relative to the macroscopic system is four o
of magnitude for a nanogram of material. Correspondingly macroscopic response tim
interest are much longer than subnanosecond atomic equilibration times. In contrast
takes microstructural elements as the fine-scale constituent. A small macroscopic vo
will not necessarily contain many of the fine-scale constituents nor will macroscopic 
intervals of interest necessarily be much longer than characteristic times of some mic
chanical processes. Henc, there is a much smaller disparity of length and time scale
tween the fine scale and macroscopic scale of a heterogeneous continuum than ther

Λ
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statistical physics systems. This is expected to have consequences for the accuracy
tistical physics techniques applied to SCM systems. It remains to be determined how
verely the accuracy of an effectively homogeneous description of a heterogeneous c
uum is reduced as compared to that for a statistical physics system.

A last difference is that the constituents in a statistical physics system are govern
dynamical equations for discrete constituents, and the averages of interest are over
namic steady state (for equilibrium). In SCM static force balance governs the fine-sc
constituents and the averages are over static geometric configurations. The statistic
relations of interest also differ. For statistical physics the mean free path of the parti
may be key, whereas in SCM the important measure may be certain moments of the
ogeneity distribution.

4. Effective Medium Theory and RVs

4.1 The Hill Condition

The goal of effective medium theories (EMT) is to represent the behavior of a he
geneous material by a homogeneous material whose properties equal the RV-avera
properties of the heterogeneous material. Doing so has the practical advantages of re
the detail of the material description to only those aspects that are of interest on a larg
and making available for the heterogeneous material all of the numerical and mathem

analysis techniques developed for treating homogeneous bodies.1,5 Effective properties 
must be determined in a statistical sense because we do not have complete knowle
the heterogeneous material, or we want to describe nominally equivalent samples tha
in fine-scale details. Energy principles can be applied to determine theoretical bound

the properties using whatever information is known about the material’s constitution5 Al-
ternately an experimental determination of an effective property is made by testing a

lection of samples to determine a statistical estimate.7,16 The resulting bounds or values ar
then used to calculate the average mechanical response of the heterogeneous mate

Constraints exist on the circumstances for which such an effective medium descr
is appropriate. The constraints insure that the effective medium behaves like an ord
continuous medium by requiring that averaged balance equations (mass, momentum

gy, entropy) have the same form as the local balance equations for a uniform continu17 
For example, consider the linear elastic response of a polycrystal. We are interested
effective elastic constants (EEC). The constraints simplify to requiring that the EEC 
fined energetically and mechanically are compatible. Defined mechanically, the EEC

denoted  and are the proportionality constants between the volume-averaged s
and volume averaged strain tensors,

. (4)

C
M
ijkl

σi j〈 〉 C
M
ijkl εkl〈 〉=
11
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(Summation is implied on repeated indices.) Defined energetically, they are denoted 
and are the proportionality constants between the volume-averaged strain energy a
volume-averaged strains

. (5)

But  is just the volume average of the local strain energy

, (6)

where the primes denote the fluctuation of the variable about its volume average va
Substituting for  from Eq. (4) and equating to Eq. (5) yields

. (7)

This result shows that the mechanical and energetic definitions of the EEC are comp
only if the heterogeneous material is loaded so that the volume average of the produ
the stress and strain fluctuations (the covariance) vanishes

. (8)

This constraint, first determined by Hill,2 expresses the requirement that the external for

deforming the polycrystal are not correlated with its microstructure.5 For an arbitrary vol-
ume of a crack-free heterogeneous material, the Hill condition, Eq. (8), is satisfied b

form applied static tractions or linearly varying displacements.2 This class of equilibrium 
applied loads will be referred to as uniform boundary conditions (UBC). Equation (8

also satisfied by selected macroscopically uniform mixed boundary conditions.18-19 The 

Hill condition, Eq. (8), has been generalized to arbitrary thermomechanical problem17 
which makes it useful also in defining nonlinear effective media. The UBC have been

ilarly generalized.16 No equivalent results are available for developing effective mediu
descriptions for dynamic, nonequilibrium systems. One difficulty in developing a dyna
theory is that the inertial forces are correlated with the microstructure so that, in gen

Eq. (8) is not satisfied.5 In practice Eq. (8) cannot be satisfied for many composites of
terest. Foremost among these are materials containing microcracks. As discussed b
the common practice is to set bounds on energetically defined effective properties o
uate mechanically defined effective property values from an explicit micromechanica
model.

The Hill condition imposes a constraint on the kinds of macroscopically uniform l
ing that are appropriate in determining effective property values or using them to des
the macroscopic response of a composite. It does not provide BCI. For BCs that satis
Hill condition, the EECs determined from Eq. (4), by applying a set of displacement U

C
E
ijkl

U〈 〉 1
2
---C

E
ijkl εij〈 〉 εkl〈 〉 1

2
--- σkl〈 〉 εkl〈 〉= =

U〈 〉

U〈 〉 1
2
--- σi j εij〈 〉≡ 1

2
--- σij〈 〉 εij〈 〉 1

2
--- σ'ij ε'ij〈 〉+=

σij〈 〉

C
E

ijkl C
M
ijkl–( ) εij〈 〉 εkl〈 〉 σ'klε'kl〈 〉=

σ'ij ε'ij〈 〉 0=
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will be compatible with those determined from Eq. (5). However, the resulting EEC te
will not necessarily be the inverse of the effective compliance tensor determined from
the mechanical definition

, (9)

by applying a set of traction UBCs. The different boundary conditions lead to differen
ues of the effective properties. It is implicit in Hill’s characterization of the RV that th
difference owing to BCs is reduced below some prescribed small value when the ave

volume is an RV. There is some ambiguity in the literature on this point,1,7 but this conclu-

sion is supported by other theoretical developments5,8 and illustrated by numerical simula

tions of elastic composites.13,19 This property of the RV to provide averages that are B

independent is sometimes called “statistically representative,”8 which should not be con-
fused with the property that the effective properties are independent of location with
large body, which is called “statistical homogeneity.”

This discussion suggests the following procedure for identifying the size of the R
a micromechanically simulated material exhibiting regular (noncritical) behavior. The
of the RV can be chosen to be the volume whose volume-averaged response yields
tive properties that are independent of the UBC within some prescribed tolerance. E
lishing a practical, direct method for identifying the RV, instead of this trial-and-error 
cedure, is discussed in the next section.

Boundary condition independence does not depend on satisfying the Hill condit
Eq. (8). Even though the effective properties defined mechanically and energetically
not be compatible, when BCI is achieved, we have, to within some prescribed tolera

 and .  is the effective compliance tensor det
mined from the energy expression corresponding to Eq. (5).

. (10)

In these circumstances the average elastic strain energy also is BC-independent, wh
responds to the merging of the bounds on the effective properties that are provided 

ergy principles.8 Finally, when averaged over the RV or any larger, fixed volume at a fi
location, Eq. (7) shows that the volume averaged stress-strain covariance becomes

, (11)

where  is a constant tensor.

As noted above, the Hill condition cannot be satisfied for many composites of inte
Materials containing cracks stand out prominently among such composites. Whether
fective properties of such composites are defined mechanically or energetically, the R
still be identified as the volume for which they become sufficiently independent of BC

εi j〈 〉 S
M
ijkl σkl〈 〉=

S
M
ijkl C

M
ijkl( )

1–
≈ S

E
ijkl C

E
ijkl( )

1–
≈ S

E
ijkl

U〈 〉 1
2
---S

E
ijkl σij〈 〉 σkl〈 〉=

σ'klε'kl〈 〉 εij〈 〉Kijkl εkl〈 〉=

Kijkl
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The incompatibility of the mechanically and energetically defined effective properties
mally constrains their use to only constitutive calculations or energy calculations, res
tively. The advantage of choosing to work exclusively with energetically defined effec
properties is that bounds can be put on the values by applying energy extremum pri

ples.3,8 Use of energetically defined effective properties in macroscopic material mod
probably an acceptable approximation when only bounds on effective property value
known. The other common approach, referred to in the Introduction, is to make enou
sumptions to sufficiently specify the distribution of heterogeneities within the RV and t
mutual interactions. Then an explicit micromechanical description of the behavior of
constituents is developed. The overall behavior is determined by first solving for the
sponse of one constituent to chosen applied BCs and mutual interactions. This resp
then averaged over the RV. Because the distribution of the interacting constituents w
specified, the RV average is rendered by averaging the single constituent response o
distribution. In this way mechanically defined effective properties are obtained. The r
ing analytical expressions, not bounds, for the effective properties are formally restr
to being used in constitutive descriptions and then only for those volumes larger tha
RV within which the assumed distribution and interactions obtain. 

It should be evident from the discussion of the RV in Section 2 and the limitation
effective medium theories in the present section, that it is highly unlikely that a viable
can be identified near the tip of a macroscopic crack. This is primarily because the lo
of any region near the crack tip has large gradients and so is not macroscopically un
Although if the response of a system of microcracks can be well modeled as critical b
ior (Section 6), characteristic - i.e., critical - patterning and coalescence of a population
microcracks might be determined.

We have presented two basic theoretical results from EMT. First, the requireme
vanishing stress-strain covariance, Eq. (8), in order for mechanically and energetica
fined effective properties to be compatible. Second and independent of the compatib
issue, the empirically based expectation that as the averaging volume is increased, ef
properties tend to become BC independent and, correspondingly, the energetic bou
their values merge. This expectation should, presumably, be expressible as reasona
sumptions about the volume dependence of the heterogeneity distribution of a comp
(This matter is pursued further in the next section.) Whether BCI actually occurs is a
pirical question that is only settled by measuring the response of the composite of in
Both results from EMT have been demonstrated for composites with elastic constitu
subjected to small deformations. These basic concepts and results from EMT are po
ly highly relevant to the macroscopic modeling application of interest to SNL that wa
scribed in the Introduction. However, before their usefulness can be realized, they n
be extended in the following ways: The range of deformations should extend to finite s
inelastic constitutive behavior of the constituents of the composite should be allowed
fective inelastic properties need to be determined, numerical methods should be dev
for treating the discontinuous strain fields of cracked material with arbitrary crack dist
tion and interactions. These extensions appear to be achievable. As already noted, g
izations of the Hill conditions for arbitrary thermomechanical problems have been re

ed.17 Several results relating average stress or strain to applied loads are applicable
14
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nite strain and inelastic constituent behavior (see comment, ref. 8, p. 35). Finally, the n
that BCI is the defining quality of effective properties and that apparent properties sh
tend to BCI values as the averaging volume increases seem to pertain equally, rega
of the particular constitutive behavior of the composite constituents.

4.2 Comparison with Bounds on Effective Property Values

For completeness the differences need to be discussed between the intended a
tion of generating synthetic constitutive data and the more traditional pursuit of dete
ing bounds on effective property values. A full discussion will be given elsewhere, or
revision of this report, after we acquire a sufficient understanding of variational boun
methods and the interpretation of resulting bounds. Here we present several questio
whose answers depend, in part, on an understanding of variational bounding metho

The goal in attempting to generate synthetic constitutive data from mesoscopic 
simulations of the thermo-mechanical response of sufficiently large systems is to de
a macroscopic description of the behavior of the simulated material in which the ma
is treated as homogeneous and uniform over some small, but macroscopic, volume. 
sulting material model would then be used in numerical solid mechanics simulations 
alyze the structural response of macroscopic objects of interest. There are two distinc
abilistic aspects of this procedure to generate synthetic constitutive data. They both
from the sample-to-sample variation of the exact configuration of heterogeneity in th
terial. In this sense the probabilistic aspects are two sides of the same coin. 

The first probabilistic aspect of the procedure is encountered in identifying the si
the RV and values of the effective properties associated with it. It is necessary to as
that the statistical description of the mesoscopic-scale material heterogeneity can be
mined to a practical extent. This statistical description will be expressed in the form 
distribution function, and it will be determined from microscopic observations on a se
samples of the material: an ensemble. The statistical distribution for the ensemble o
ples can be taken to describe the heterogeneity in a “typical” sample of the material
cause a “typical” sample may never actually occur, this interpretation of the ensemb
tribution function should be likened to a median value rather than a mean value. The
size and effective property values will be determined for the “typical” example of the
terial. This is necessary both to make it possible to define the RV and to obtain value
are more representative of the average response of a population of samples. 

The extent to which the effective property values are representative depends on
factors. One is how well the material response to a particular loading can be treated
response of a homogeneous material. The other is how closely the heterogeneity di
tion in any individual sample approximates the distribution function for the ensemble.
is the second probabilistic aspect of the procedure. It has the consequence that the 
scopic response determined using effective properties will not match the response o
given sample. This adds the practical necessity of estimating the variance of the effe
properties to assess the range of responses that can occur in a population of object
of the heterogeneous material. From this it is seen that the macroscopic solid mech
15



Aidun et al. 5. Establishing Conditions for BC 

rties 
 the 

ea-
emble 
s. 
 and 
sting 
he true 
ble dis-
r, 
ult and 
mble 
perty 
rmined 

ncer-
r. Are 
 princi-
 the 

ues 
rop-
per-

erty 
e vari-
plica-
ing 

 
ergy 
eems 
t why 

aspect 
indi-
rifying 

of the 
osite 
 inves-
simulation that was supposed to be enabled by determining effective material prope
now needs to be a stochastic analysis to account for the variability of individuals from
“typical” behavior.

Accounting for the uncertainty in the input to an analysis requires an additional m
sure of error besides the variances of the effective property values. The empirical ens
distribution function will not exactly represent the total population of material sample
Thus a numerical analysis of an ensemble will provide an ensemble-averaged value
variance for an effective property that can differ from those obtained by laboratory te
a collection of samples, each larger than the RV. The laboratory specimens sample t
distribution function, whereas the numerically generated systems sample the ensem
tribution function, which only approximates the true one. Ignoring measurement erro
what can we say about the magnitude of the disagreement between the numerical res
the laboratory result? There is an additional consequence. Say we improve the ense
distribution function by enlarging the ensemble and then recalculate the effective pro
mean value and variance. What is the relation of these revised values to those dete
with the more approximate ensemble distribution function?

Both the variances of the effective property values and the error owing to input u
tainty would be useful for defining bounds for the range of responses that could occu
the desired bounds related to those obtained by variational methods from an energy
ple? In this regard it seems pertinent that the principle of complementary energy and
principle of minimum energy consider different BCs, but we are working with BCI val
of effective properties. Also, the principles deal with energy definitions of effective p
erties, whereas the numerical analysis works with mechanically defined effective pro
ties.

Beyond these questions of the applicability of variational bounds to effective prop
values determined by direct numerical simulation are other questions that bear on th
ety of systems to which the variational methods can be applied. In particular is the ap
bility of variational bounding methods limited to perfectly bonded, linear materials lack
any discontinuities across internal interfaces? Do extremum principles exist to allow
bounding methods to be applied to nonlinear or inelastic behavior? Do variational en
principles provide noncoincident bounds when the system size exceeds the RV? It s
likely that they do because system size does not enter into the bounding method, bu
does system size not enter into variational bounding method?

5. Establishing Conditions for BC Independence

As stated at the end of Section 2, we presume that for a given composite, some 
of the statistical description of the internal geometry of the material heterogeneities 
cates or, perhaps, determines whether a volume yields BC-independent averages. Ve
that this is the case and identifying the particular feature of the statistical description 
geometry that is an indicator will require numerical experimentation with model comp
systems. In this section we discuss items related to such an investigation. Particular
tigations that will be pursued are outlined in Section 7.
16
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The numerical investigation on model systems will evaluate the suitability of var
statistical descriptions of the internal configuration of the material. For a simple mate
like a uniform matrix with spherical inclusions, the pair distribution function, , or

dial distribution function, , may be sufficient to statistically characterize the mate

 is the probability of finding an inclusion whose center lies within an annulus, 

tered on a given inclusion, that has a thickness  and radius of . For slightly more
plicated materials, like short fibers in a uniform matrix or micro-cracks in an otherwise
mogeneous medium, the pair distribution function could be generalized to a vector fun
that additionally accounts for inclusion shape and orientation. Pyrz suggests using th
ond order intensity function, , because it is a theoretically well-understood mathe

ical quantity;20 its radial derivative equals . Pyrz demonstrated that  can
criminate between different patterns.

Statistical homogeneity (see Section 2) is likely to be a sufficient condition for a 
ume to have BC-independent average properties. However, it is an overly restrictive
quirement for a given sized volume to be accepted as the RV size. Requiring statisti
mogeneity for the RV needlessly dissolves the distinction between “statistically repre
tative” and “statistically homogeneous.” Instead of requiring that the RV be statistica
homogeneous, it seems reasonable to expect that some aspect of the statistical des
of the internal geometry should indicate the size for which averages become nearly 
dependent. For example, it may happen that a distribution function chosen as the sta
description of a material changes qualitatively, but continuously, as the averaging vo
is increased sufficiently to provide BCI. Such an occurrence could be likened to a ph
transition, but one occurring in the distribution function rather than in the physical sys
This opens the possibility of applying the analysis techniques used for phase transiti
try to identify, directly, the size of the RV. Such an analysis would be additionally attra
if the parameter that describes the transition in the statistical distribution (the order p
eter) can be related to the physical system. As background for anticipated developm
along these lines, the next section presents the physical interpretation of the correla
length and a brief overview of current understanding of continuous phase transitions

6. Critical Phenomena and Correlation Length

The correlation length is a low-order measure of a statistical distribution that, ow
to its physical significance, is a potentially useful quantity to use to express the criteri
the internal geometry of a heterogeneous material must meet for volume averages t
nearly BC independent. The RV and effective properties determined from it are only 
terest when a low-order approximation for the response of a material is adequate. F
reason it is consistent to consider using a low-order approximation to the statistical d
bution for the purpose of identifying the size of the RV. To illustrate the physical mea
of the correlation length, basic aspects of critical phenomena and the theory describ
are presented. This section also provides background for understanding several line
quiry current in the literature in which the behavior of disordered systems are repres
by a variety of stochastic models. For this purpose brief descriptions of the scaling hy

g r( )
g r( )

g r( )dr

dr r

K r( )
2πrg r( ) K r( )
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esis and percolation theory are presented along with a discussion of the (doubtful) r
vance of critical phenomena to micromechanical modeling.

“Critical phenomena” is the modern term for the behavior previously referred to 
“higher-order phase transitions” or “continuous phase transitions.” “Phenomena,” esp
ly in the current discussion, should be understood in a very general sense, not limite
thermodynamic phase transformations. A system exhibiting a critical behavior under
a continuous, qualitative change in its character. Some attribute of the system chang
tinuously from zero, when the temperature, or some other control variable, is above
threshold value, to nonzero and growing for temperatures below the threshold. The qu

that changes continuously from zero is called the “order parameter.”21,22 While the order 
parameter is zero, the system is entirely in the high-temperature, or “disordered,” ph
Nonzero values of the order parameter indicate that the system is a mixture of ordere
disordered phases. The magnitude of the order parameter provides a measure of the
of the ordered phase present in the system. (The nature of order parameters is such
new phase that is present only when an order parameter is nonzero has lower symm
can be construed to be the more ordered phase.)

Continuous thermodynamic phase transitions are the prototypical critical phenom

with two cases being particularly accessible examples:21 (i) liquid-vapor transition in a gas
at its critical point (CP), which is the point in the pressure-temperature plane where 
first-order liquid-gas phase boundary ends and (ii) ferromagnetic-paramagnetic tran
in a ferrous metal at the Curie temperature. The first distinguishing feature of these 
tions is that specific volume or magnetization, which are first derivatives of the Gibbs
energy (with respect to pressure or magnetic field, respectively), are continuous acro
respective transitions. The order parameters of these two transformations are the diff
in density between the vapor and liquid and the net magnetization. Careful observat
demonstrates that the derivatives of the order parameter with respect to the intensiv
variables (which are second derivatives of the Gibbs energy) are not just discontinuo
also have singularities at the critical point.

The concept of correlation length is motivated by the physical significance of the
singularities. The pressure derivative of the density is the compressibility and the mag
field derivative of the magnetization is the magnetic susceptibility. Near the Curie tem
ature the latter becomes very large and large magnetization fluctuations result from 
small magnetic field fluctuations. Near the liquid-vapor CP, the compressibility beco
very large, and large density fluctuations result from very small pressure fluctuations
perimental confirmation of the large density fluctuations comes from observations tha
usually transparent fluid becomes milky white and opaque very near to the CP. This
ical opalescence,” as it is called, results from density fluctuations acquiring sufficient 
nitudes at wavelengths comparable to visible light that they strongly scatter light. In g
al, the derivative of an extensive thermodynamic variable with respect to the related
sive variable (a “thermodynamic force”) is referred to as a “response function” or 

“susceptibility.”9,22 Elastic constants are a notable example of such quantities. These
ceptibilities are the quantities that become large near a CP and singular at it. Conside
of thermodynamic fluctuations in a system at thermodynamic equilibrium leads to the
clusion that the susceptibilities govern the spatial extent of fluctuations of the extens
18
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variables.21,22 In particular in the thermodynamic limit, the static (zero frequency) sus

tibility is completely determined by the long wavelength, equilibrium fluctuations.9 Hence 
divergence of a susceptibility indicates that the extent of the corresponding fluctuatio
comes as large as the system itself. The existence of long wavelength fluctuations m
that the response of the system is correlated over macroscopic distances. There is l
ranged order. The order parameter value at one location becomes related to its valu
distant location. Indeed, all intensive quantities acquire long-range correlations near
as explained next.

Thus critical phenomena depend on fluctuations in an essential way. Far from a
fluctuations are of microscopic extent, comparable to the interparticle separation; but 
CP is approached, they occur on an increasingly broad spectrum of wavelengths. At t
fluctuations at all wavelengths - i.e., all length scales - contribute to the values of the th

modynamic variables.9,23,24 Mathematically fluctuations are described by the correlatio
function. The long wavelength fluctuations correspond to the mean of the correlation

tion.9 The correlation length is a characteristic length associated with the correlation
tion. As the susceptibilities grow near the CP, the correlation function and its correla
length also diverge. This correspondence indicates that the correlation length, ξ, provides 
a measure of the spatial range of order in the system. In particular the correlation le

marks the crossover between critical and ordinary behaviors:24 When a system is treated

on a length scale, , - i.e., averaged over a region of size , where  is the system dim

sionality - for which , it exhibits power law critical behavior, just as at the CP. In c

trast on length scales with , correlations decay exponentially fast and the behav
ordinary.

The correlation between two (or more) events is the difference between the joint
ability of the pair of events, , and the product of the random probability of each ev

alone, .23 A useful example is the pair of events in a system of particles that there

particle located at point , and another particle located at point  such that the dist

vector between these two positions is . The correlation, as a function of , is given

. (12)

To make this relation statistically meaningful, it needs to be averaged over an ensem
similar systems. The ensemble average is typically equated with a time average or a
average over a single macroscopic sample by invoking ergodicity.

To extend this example, consider a simple lattice model of a binary alloy that en
only very short-ranged interactions. Investigations of such models show that the state
cupation of a substituted lattice is characterized by a wide-spread order even though

teractions only have a short range.23 For understanding how such long-ranged effects ar

L L
d

d
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it is useful to study the correlation function, . Theories of critical phenomena pre

a general form for the radial dependence of the correlation function given by23 

. (13)

Based on this behavior, the correlation length is defined as25

. (14)

Hence ξ has the physical significance of being a spatial range of correlations within the

tem.23An alternate scalar measure of correlations that gives the range of order is

. (15)

At the CP the correlation length, , and range of order, , both become infinite. 

6.1 Universality and the Scaling Hypothesis

That fluctuations at all length scales contribute to the values of the thermodynam
variables at the CP means that there is a loss of length scale for the system. The dis
lattice spacing becomes irrelevant, and there is no fluctuation wavelength with any s
significance. Another manifestation of the loss of scale is that based on measureme
analysis of model systems, the (singular part of the) thermodynamic functions are des

by power laws in the distance to the CP.9,21 Power laws are scale invariant, meaning th
the form of the function is unchanged by multiplying its argument by a scale factor. C
sequently, the function is self-similar at all scales. It has no characteristic length asso

with it.26 Basic thermodynamic and statistical mechanical arguments show that the e
nents of these power laws, the “critical exponents,” satisfy a set of inequality relation

dependent of the details of any particular system.21 This is consistent with the idea that cri
ical phenomena arise from long-ranged correlations, for which case it is reasonable
pect that at least some details of the interactions within the system are irrelevant to 

behavior near the CP.23 Accepting this assumption, systems that share the same relev
aspects would be expected to have comparable singular behavior at the CP. These e
tions have lead to the universality hypothesis, which asserts that all critical behaviors ma
be classified according to the dimensionality of the system, the symmetry group of t

der parameter, and possibly a few other general criteria.23,25 For this reason it is of consid
erable interest to determine critical exponents of the different universality classes. K
ing these, the dimensionality of a system, and the symmetry of its order parameter s
its universality class can be identified, the qualitative behavior of the system near a 
known, if the universality hypothesis is correct.

The value of being able to describe thermodynamic functions near the CP and t
ference that a loss of length scale is intrinsic to critical behavior motivated the scalin
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C r( ) r
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pothesis.9,21,23-25 At the CP the correlation length, ξ, which marks the crossover betwee
critical and ordinary behaviors, diverges, making all finite lengths that are representat
aspects of the system much smaller than ξ. For this reason, at the CP it should not matte
what length scale is used in investigating the system; the system looks similar at all l
scales from the lattice spacing up to the system size. Based on these observations, 
advanced the scaling hypothesis: As a CP is approached, thermodynamic functions chan
their scale but not their functional form. This is described mathematically by expressin

thermodynamic free energy as a homogeneous function (a generalized power law).9,21 
Scaling theory, which is the result of taking any free energy to be a homogeneous fu
in the neighborhood of a CP, leads to a consistent description of the critical behavior
result shows the scaling hypothesis to be a unifying principle for critical phenomena
yond this scaling theory produces equality relations among the critical exponents and co
strains the form of the equation of state. Most notably scaling theory predicts that onl
critical exponents are independent. The predicted scaling behavior of thermodynamic
tions near a CP has been partially verified experimentally in addition to analytic and
merical verification for model systems. Scaling theory does not predict the values of
critical exponents, however. For determining these, a set of scale transformation tec

niques, collectively known as renormalizaton group methods, have been developed25 

6.2 Percolation

Percolation is a purely mathematical procedure that exhibits a kind of critical beh

that is not a thermodynamic phase transition nor even a physical phenomenon.24,27 It has 
been used to good advantage as a technical tool to model a broad range of physica

tion phenomena.27 It was originally introduced as a model of fluid flow in a disordered m
dium and recently has been investigated extensively as a model for fracture in disor

materials.28,29 The latter is particularly interesting in the context of the present inquiry
indicated in the introduction. We discuss percolation here as background for the antic
future investigation of microstructurally based fracture criteria. In addition, percolatio
provides further illustration of the physical meaning of the correlation length. That pe
lation theory provides a richer understanding of correlation length is an example of w
has attracted much attention. Generally speaking, the critical behavior exhibited by 
lation models is highly accessible to investigation. Combined with the universality hyp
esis, this makes percolation a useful model of critical phenomena in physical system
vestigation of a percolation system having the same order parameter dimensionality a
same spatial dimensionality as a physical system of interest can provide an accurat
scription of the near-CP response of the physical system if the universality hypothes
correct. Furthermore, percolation can provide insight into localized-to-extended state

sitions when applied as a qualitative model of the physical phenomenon.27

In lattice percolation one considers randomly filling (marking) sites or bonds of a

ular lattice with some fixed probability, .24,27 The statistical question of interest is, ‘for 
what value of the filling probability, on average, does a continuous path of marked sites
first develop through an arbitrarily large lattice?’ This critical fraction of filled sites is 

p
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“percolation threshold,” ,and it is a critical point.24 The most noteworthy feature of the

percolation problem is that it is a simple model that exhibits critical phenomena. In this
the “phase transition” is geometric, going from the absence of any continuous paths
ning the entire system to the existence of such a path, which is called the “infinite clu
The infinite cluster covers an increasing portion of the lattice as the probability of occ
cy of the sites of the lattice is increased. The order parameter is the fraction of the s
occupied by the infinite cluster. Because lattice percolation and its generalization to 
tinuous space, continuum percolation, can be conveniently investigated numerically
are useful for modeling. Furthermore, the details of systems that exhibit percolation 
quite varied. Only the simplest site percolation systems have been alluded to here. Th
ibility in defining percolation systems is an additional reason for their growing use for m
eling physical systems. Bond percolation is another class of percolation problems th
hibit distinct differences from site percolation.

It should be emphasized that percolation is a stochastic model. This is typical of c
phenomena, which are governed by system fluctuations and, consequently, depend

the statistical distribution of variable values, not just on their mean values.27 The procedure 
for investigating percolation numerically is to randomly fill a collection of identical fini
sized lattices using a given filling probability. This process generates a large number
dividual cases or “realizations” of the same overall state - namely, a fixed mean valu
the fraction of filled sites. This collection of many realizations is treated as an ensem
configurations, and conclusions concerning the behavior of a system that exhibits pe
tion are statistical statements about the behavior of an ensemble of realizations of th
tem subject to prescribed values of its independent controlling variables. This is the r
for emphasizing “on average” in describing the percolation problem. For systems wh
analytic description is sufficiently simple, the alternative to working with an ensembl
systems is to explicitly determine the behavior of one realization of the system in the
modynamic, infinite size limit.

The range of order, Eq. (15), is used in percolation theory as an alternate definitio

the correlation length.24,25 In the context of percolation, the correlation function is the 
probability that a site a distance, , from an occupied site is also occupied and is in the
cluster. (A cluster is the group of all the sites connected together by a continuous pa
neighboring occupied sites.) The square of the range of order is then

, (16)

where the summations run over all lattice sites.  determined in this way is the ave

squared distance between two cluster sites in the lattice.  is consistent with that fo
modynamic phase transitions, Eq. (6), in as much as the critical exponent for it satisfi

expected relations with the other exponents.25  is also a measure of the largest hole in
cluster and the radius of those clusters that make the main contribution to the mean 

size.24
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r

Γ2
r2C r( )∑
C r( )∑

-----------------------=

Γ2

Γ

Γ

22



Aidun et al.6. Critical Phenomena and Correlation 

olat-
-di-

sh-

 in 

 with 
ated 

r den-
s to the 
ct of 
e calcu-
y the 
ystem 
ence 
h the 
rate re-

 site 
e-

 on the 

 law be-
tion 
The physical significance of the correlation length and scaling properties of perc
ing systems were further illustrated by a numerical study of site percolation on a two

mensional square lattice.30 Kapitulnik et al. demonstrated that near the percolation thre
old, the infinite cluster is homogeneous on length scales much larger than ξ and ramified 
with holes on all scales smaller than ξ. Thus ξ is a measure of the size of heterogeneities
the lattice. 

.

Figure 1. Schematic semilog plot of site density versus linear dimension of averag-
ing window for site percolation on a square lattice (after Kapitulnik et al.30).

Figure 1 is a schematic of their results. For averaging areas  within the system
, the density of occupied sites in the cluster varies as a power of . This is indic

by the linear part of the curve at small . For averaging areas with , the cluste
sity is roughly constant and the system appears to be homogeneous. This correspond
shallow-sloping midportion of the curve. Their study also demonstrated a further effe
correlations. As the averaging area approached the size of the simulated system, th
lated cluster density again varied with the size of the averaging area, as indicated b
steepening of the curve at large . This result is an example of calculated values of s
properties being sensitive to the boundary conditions. Appropriately the range of influ
of these boundary effects is given by the correlation length, . This is consistent wit
notion that the correlation length characterizes the range of influence between sepa
gions of the system.

 By repeating the numerical exercise for a different value of , the probability of
occupancy, Kapitulnik et al. also found that the percolation system exhibited scaling b

havior.30 They showed that  increased as  neared , and the average site density

homogeneous scale ( ) decreased, both in accordance with the expected power
havior. Far below the percolation threshold, only small clusters occur and the correla
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length is on the order of the lattice spacing, . In this regime the lattice spacing prov
relevant length scale. Near the percolation threshold the lattice spacing becomes un
tant because the range of cluster sizes increases substantially, and the clusters conta
of all sizes smaller than themselves. The resulting ramification of the clusters corresp
for critical phase transitions, to the thermodynamic functions being determined by flu
tions with an increasingly wide range of wavelengths. In that same sense there is a 
length scale. The correlation length, which can be interpreted as the radius of those c

that make the dominant contribution to the mean cluster size,24 is the only available length
scale. Both it and the size of the infinite cluster, which is the order parameter, diverg
power laws near the percolation threshold, , as is expected from the scaling hypo

Generally speaking, ξ can be a measure of heterogeneity. In percolation it gives the
ear extent of geometric heterogeneities. In physical systems it characterizes the line
tent of heterogeneities in field variable values. Because these are the attributes that
sire for an RV, the correlation length is an appealing candidate for defining RV size.
eral questions need to be resolved to establish that a correlation length is suitable fo
RV size. When applied to a mechanical system, does the correlation length retain all
attributes that it has for critical phenomena? What is the analogy to critical phenome
What correlations are of interest? How should an RV defined in terms of a correlatio
length be used? Does scaling behavior occur? Under what conditions? The discuss
the next subsection bears on these questions. Answers to these questions will be pu
through the numerical experiments on model heterogeneous systems that are descr
Section 7.

6.3 Discussion

A key question to resolve in determining how to use the numerical simulations o
crostructural processes to develop constitutive models is whether real microstructur
chanics processes exhibit critical phenomena. A micromechanical system that does
critical behavior is highly amenable to investigation with a percolation model. In addit
we can immediately infer several qualitative aspects of the behavior of a system in w
critical microstructural processes occur: The “interesting” macroscopic behavior of the
tem is governed by the distribution of values of the microstructural quantities, not just

mean values.23,27 A correlation length, ξ, can be defined that characterizes the statistic
distribution, which evolves during deformation. The correlation length could be taken
define the linear dimension of an RV because it marks the crossover between small 
scales, on which different regions of the system behave differently, and large length s
on which all regions of the system are comparable. Presumably the requirements of
are satisfied for RVs of this size subjected to macroscopically uniform BCs. Provide
mesh elements used in a FEM simulation are larger than ξ, the material is macroscopically
homogeneous. 

Near the CP the correlation length is finite but becomes macroscopically large. 
if a micromechanical system exhibits critical behavior, the RV has a variable size, and
the CP the RV can exceed the size of mesh elements. When this occurs, the materia
one mesh element may not be equivalent to the material within another element. A c

a

pc
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tutive description need not be abandoned, but a different constitutive model has to n
used to the extent that well-defined constitutive variables cannot be determined by s
volume averaging over an RV. The material response may become nonlocal. Where 
eraging is inadequate, an alternative approach to defining relevant constitutive quan
may present itself. Because the system is near a CP, applying the scaling hypothes
provide a link between microstructural and macroscopic response and may be a bas
developing an appropriately altered constitutive model. This last possibility needs to 
vestigated more fully.

A related question is whether a numerical model chosen to represent regular (n
ical) micromechanical behavior can, itself, exhibit critical behavior. When this is a po
bility, the region of parameter space that produces critical behavior in the numerical m
then needs to be identified and avoided when the model is applied.

Preliminary to determining whether a given micromechanical system or numeric
model exhibits critical behavior, it will be necessary to develop a statistical descriptio
a material’s heterogeneity. A useful statistical description will represent the distributio
the variables whose correlations control the material response. Such a statistical desc
is desirable, regardless of whether there is critical behavior, as discussed in Section

In order to apply a typical percolation model to represent microcracking behavior
eral questions should be considered. Is the ultimate state of pervasive cracking that p
es a system-spanning fracture critical behavior, as is implicit in the percolation mode
approach? The first step required to answer this question is to identify the microstru
quantity whose fluctuations exert a significant influence on the macroscopic behavio
Does this quantity qualify as an order parameter? Large values should correspond to
far from the CP, and it should be discontinuous across a first-order transition with th

continuity vanishing as the CP is approached.23 Second, do these fluctuations become c
ical - that is, does their correlation length diverge and are there fluctuations at all wa
lengths when it does? (Together, these indicate a loss of length scale.) Answering th
questions not only identifies whether we are dealing with critical phenomena but als
tablishes the analogy to a model critical system. This is important for interpreting the
sults when, e.g., a percolation model is used to represent microcracking resulting in fr
ture. 

Disorder is cited as a defining feature of the systems in which microcracking has

modeled with percolation.28 The disorder can be of any kind, from extensive material h
erogeneity, or just local strength variability within a single crystal. Some aspects of t
sponse of disordered systems can be modeled as critical phenomena when the stat
distribution of the disorder, not simply the average amount of disorder, governs the s
behavior. Recall that the spread of the probability distribution of the disorder can be
acterized by a correlation function. Hence the correlation length can provide a meas
the fluctuations of the spatial disorder within an ensemble of systems. When the res
depends on only the average amount of the disorder, its analysis does not require en
averaging or, equivalently, taking thermodynamic limits.

The elastic network is a version of a bond percolation model that has been invest
in an attempt to obtain insight into cracking in disordered brittle materials. The situat
25
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that is modeled by an elastic network is microcrack nucleation at randomly located f
or weaknesses and coalescence to form a macroscopic fracture in an initially uniform

subjected to far-field tension.28 It has also been investigated with some experimental p

colation models.31,32 In contrast to a typical percolation model, evolution of the elastic 
work is more directly governed by physics. For each increment in strain, the stresses
network of elastic bonds are explicitly calculated. The bond that reaches a failure con
first is removed and the stresses are recalculated. This is repeated for a given strain
ment until equilibrated stresses are obtained for which no more bonds reach failure. 
ther contrast with typical percolation models, the resulting ensemble behavior of the e
network systems has been interpreted as exhibiting a scaling behavior for typical situ

and not the scaling that develops near a CP.33 The noncritical scaling is likened to the wa

the scaling behavior of turbulence is described.33 The concept of noncritical scaling and th
role that a correlation length may play is not yet clear and needs to be studied furthe

7. Initial Study

To begin to investigate the issues that have been identified, in particular criteria f
fining RV size, we will pursue the following investigations.

To illustrate the concepts of macroscopically equivalent systems and bulk proper
termination in statistical physics, we will investigate the calculation of stress in a disc
system using molecular dynamics simulations. The two parts of Eq. (A4), presented 
Appendix, will be evaluated for model systems to verify the points stated by Balescu
model systems will be an FCC crystal of atoms interacting according to a Lennard-J
potential and a similar FCC crystal having randomly positioned point defects. The pe
crystal will be treated at finite temperature, where thermal motion will introduce irreg
ity. The defective crystal will be analyzed at zero temperature after the system is allo
to relax to an equilibrium configuration. For both types of systems, the simulations w
proceed by deforming a large system to induce a state of stress. This will be followe
calculation of the bulk and surface contributions to macroscopic stress from the two
of Eq. (A4) for a variety of subvolumes.

The results of these calculations will be evaluated for the expected trends given b
(1) and (2) and to distinguish system surface effects from averaging region size effect
latter evaluations will entail comparison of distances within the system with a relevan
relation length. For the crystal with point defects, this should be related to the radial 
bution function of the point defects. For the perfect crystal the minimum-sized bulk sy
is the unit cell at zero temperature. For a warm crystal it is larger with the relevant co
tion length expected to be related to the wavelength of some characteristic lattice vib

Another investigation will assess the criteria for defining the RV discussed in the
present report. In the first part of this study, we will seek to confirm that equilibrium e
tive properties that are independent of the choice of BCs can be obtained by increas
system volume and/or the averaging volume for a heterogeneous continuum. The ave
volume need not be as large as the system volume. As discussed above, in the cas
percolation the averaging volume needed to be smaller than the system volume to a
26
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boundary effects.30 Two heterogeneous continuum models are needed to perform thi
ercise. The first should maintain continuity throughout the deformation so that the fu
mental results of effective medium theory can be confirmed for numerical application
second model should include some form of cracking to test our ability to properly trea
continuities in otherwise continuous systems. Suitable microstructural test models w
sought from those that are being developed and applied in concurrent projects at SNL
for expediency and because it is anticipated that these two projects will be able to u
results of the present project. Candidate model systems to use in these investigation
clude: glass microballoon-filled epoxy, an elastically and plastically deformable poly
tal aggregate, and a randomly microcracked elastic body.

The second part of this study is to address how to statistically characterize the h
geneity and identify aspects of the statistical characterization that indicates RVE size
will be pursued by testing different means of computing and then interpreting correla
lengths for all of the simulations performed in the first part of this study. Developing a
rithms for computing the correlation function and length in the types of numerical mo
of interest is a necessary first step. Following this will be the more interesting step of
preting the resulting correlation information. This will be aimed at relating the correla
length of the most relevant variables to criteria for BCI of equilibrium effective proper

It will be of interest to follow up this assessment of criteria for identifying the RV
using the results of the above investigation to determine the extent to which fracturin
be regarded as a critical phenomenon. It would be appropriate for this purpose to us
elastic network model in which fracture has been treated by others as being a critica

nomenon.28 The computer program GLAD, being used in two projects at SNL is such
model. This makes a close comparison with previous investigations more manageabl
en our ambition of developing criteria relating microcracking to macroscopic crackin
will be useful to clearly identify which aspects of microscopic cracking can be assoc
with critical behavior. Under conditions that elicit the supposed critical behavior of m
cracking, the relation to macrocracking must change. Volume averaging should bec
untenable owing to correlation lengths enlarging, but at the same time, scaling relat
should become applicable. Thus this part of the study, seeking to identify critical beh
in a model system with cracking, is the first step in properly treating the macroscopic
sequences of possible critical behavior for microcracks.

Beyond these particular investigations, attention needs to be given to how to de
effective property treatments of inelastic (nonlinear) response and to identifying how
simplify the constitutive description in a simulation on a length scale smaller than the R
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APPENDIX
Example Bulk Property Calculation: Stress in a Discrete System

The configurational stress in a system of particles whose interaction is describe

the crystal potential, , is given bya1 Φ
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where  is the ith component of the position vector to the  particle. Greek supersc
label particles and latin indices label Cartesian components. Consider the case whe
crystal potential is the sum of pairwise interactions between the particles. We have

, (A2)

and taking , the configurational stress becomes

. (A3)

Assuming that the particle interactions have a finite range, this expression can be sep
into sums over  interior particles and  near-surface particles results in a form
ilar to that of Eq. (1):

. (A4)

The first double sum includes all of the interactions of the  particles that are farther
the surface than the particle interaction range. It is expected to give the bulk value of 
in the system, analogous to  in Eq. (1). Based on Balescu’s characterization prese
Section 3, it is expected that this interior bulk contribution will be constant for sufficie
large systems. The second double sum includes all of the particles that are close eno
the surface to interact with particles (in the case of applied mechanical contact force
are outside of the system. Note that the interactions with the external particles are n

cluded in the second double sum since  is the crystal potential not the total potenta1 

The surface contribution to  expressed by the second double sum obeys Eq. (2) 

with increasing system size, V increases faster than the number of contribution to thi
ble sum.
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