SAND91-1752 Distribution
Unlimited Release UcC-705
Printed 2/15/99

PHYSLIB:
A C++ Tensor Class Library
(Version 2)

Kent G. Budge
1431
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

PHYSLIB is a C++ class library for general use in computational physics applications. It
defines vector and tensor classes and the corresponding operations. A simple change in the
header file allows the user to compile either 2-D or 3-D versions of the library.

Acknowledgment

The author acknowledges the assistance of J.S. Peery for reviewing this library and for
much discussion of general C++ programming issues.

Contents

F o L0111 =T o o 1= o | 4ol
(OF0] 01 (=] 0 £ TP UPPPPP S...
o 1= = T PP 1.
YU [1 0= YOO 9.....
I [Vi 0o [Tod 1 o] o PSS OUPPPTPPTRPRPRRTN Al
1.1 Vector and Tensor Operations and NOtatioNeueeeieiiiiiiiiieieinieeee 11
I R Y =T o £ PRSPPI 11
R =T 1 o £ PP UPPPPRTTR 12
1.1.3 Symmetric and AntiSymmetriC TENSOIS........cccevvriiiiiiiiiiiiiiiiiiieeeeeeeeee e 14
1.1.4 Vector and Tensor Components; Indicial Notationovvvne. 14
1.1.5 Einstein Summation CONVENTIONcoiiiiiiiiiiiiiiiiiiiiee e eeeeeeenieens 15
1.1.6 DIMENSIONAIITYvvveeiiiiiiieiieeieee e e 16
1.2 The C++ Programming LANQUAGEcuvuvuuriiiiieieeeeeeeeeeeeeeeeeeeiise s e e e e e eeaaeeees 17
1.2.1 Data ADSITACHON ..cuveeiiiieie e 17
1.2.2 Special Member Functions and Dynamic Memory Management.......... 17
1.2.3 Function and Operator Overloadingcccoovviriiiiiiiiiiiiiccee e, 18
2. The PHYSLIB LIBIaArY......ccooi ot 21
200 R o1 = 11 o (o] 21
2.1.1 Private Data MEMDErS.uuiiiiiiiiiiiiiiiiieee e 21
2.1.2 Special Member FUNCLIONSiiiiiiieeeee e 21
2.1.3 ULIlity FUNCLONSuiiiiiiiiiiiiiicieee et e e 24
P ol - 1SR = o o OSSP PP 25
2.2.1 Private Data MEMDEIS........uu i 25
2.2.2 Special Member FUNCHONS ... 25
2.2.3 ULility FUNCHONS ...t e e e e e e e e e e 31
2.3 ClaSS SYMTENSONuuiiiiei et a e e e e e e e e e e aeeeeees 32
2.3.1 Private Data MEMDEIS........uuuuiiiiiie et e e e e e e e e eeeeaeannnes 32
2.3.2 Special Member FUNCLIONScoiiiiiiiiiccicceeeeeees e, 32
2.3.3 ULility FUNCHONS ...ttt e e e e e e e eees 36
A o1 = 11 Y (= 0 o RSP 37

2.4.1 Private Data Members

... 37
2.4.2 Special Member FUNCLIONSciiiiiiiii et 37
2.4.3 ULty FUNCHONS ...ttt e e e e e e e eees 40
2.5 Operator Overload FUNCLONScoouiiiiiiiiiiiiieciiiiiie e e 41
2.6 MEINOAS ...t a e e e e 52
2.7 Predefined CONSIANTSccoiiiiiiiiieeiiiie et e e e e e e e e eeeeeenes 58
3. USING the PHYSLIB CIASSESccooiiiiiiiiiii ettt 61
3.1 USEIESS OPEIratiONS. .. .ccii i i e e eeiieeee et e e e e e e e e e e et e e e e e e e e e e e e e aaeeaaanes 62

References 63

Index of Operators and FUNCHONS.........ccuuuiiiiiiiiiii e e e 65

Preface

C++ is the first object-oriented programming language which produces sufficiently effi-
cient code for consideration in computation-intensive physics and engineering applica-
tions. In addition, the increasing availability of massively parallel architectures requires
novel programming techniques which have proven to be relatively easy to implement in
C++. For these reasons, Division 9231 at Sandia National Laboratories is devoting consid-
erable resources to the development of C++ libraries.

This document describes the first of these libraries to be released, PHYSLIB, which de-
fines classes representing Cartesian vectors and (second-order) tensors. This library con-
sists of the header filphyslib.h and the source filphyslib.C . The library is
applicable to one-dimensional, two-dimensional, and three-dimensional problems; the
user selects the dimensionality of the library by defining the appropriate preprocessor
symbol ONE_DTWO_Dor THREE_D when compilingohyslib.C and his own code.

This code was produced under the auspices of Sandia National Laboratories, a federally-
funded research center. This code is available to U.S. citizens and institutions under re-
search, government use and/or commercial license agreements.

The PHYSLIB library i€1 1991, 1994 Sandia Corporation.

(Intentionally Left Blank)

Summary

PHYSLIB defines the following classes:

class Vector Cartesian vectors

class Tensor Cartesian 2nd-order tensors

class SymTensor Cartesian 2nd-order symmetric tensors
class AntiTensor Cartesian 2nd-order antisymmetric tensors

Methods that are defined for these classes include the following:

Dot and outer products

Cross products for vectors

Other arithmetic operations

Duals (dot or double dot product with the permutation symbol)
Trace of tensors

Transpose of tensors

Determinants and inverses of tensors
Symmetric and antisymmetric part of tensors
Scalar invariants of tensors

Norms

Colon operator (scalar product of tensors)
Deviatoric part of tensors

Equality comparisons of vectors and tensors
Standardized stream 1/O for vectors

10

(Intentionally Left Blank)

Introduction |

1. Introduction

Almost every branch of theoretical physics makes use of the concepéxtfrsandten-

sors Vectors are conceptually simple; they are quantities having both magnitude and di-
rection, such as the velocity of a particle. Tensors are conceptually more difficult. They
represent rules that relate one set of vectors to another, and they appear in many physical
formulae.

This document briefly reviews the mathematics of vectors and tensors; discusses the basic
difficulties in translating vector and tensor equations into computer code; and describes
how the C++ programming language has been used to alleviate these difficulties, thereby
producing reliable, reusable, and transparent computer code at a much reduced cost in pro-
grammer effort.

1.1 Vector and Tensor Operations and Notation

We briefly review the basic concepts and language of vectors and tensors. A more com-
plete discussion can be found in [2].

1.1.1 \Vectors

A vectoris a physical quantity such as velocity that has both a magnitude (“five hundred
km/sec”) and a direction (“towards the northeast”). It may be written as a lowercase sym-
bol with an arrow over it, such as . Quantities such as temperature or mass that have mag-
nitude but no direction are callescalars and are represented by lowercase symbols
without an arrow, such as

The magnitude onormof a vectora is written as and is a scalar, while its direction
may be written ag . The direction of a vector is itself a vector with magnitude 1 (called a
unit vectop.

A vector may be multiplied by a scalar. The result is a vector with the same direction as
the original vector and with a magnitude equal to the product of the scalar and the magni-
tude of the original vector. That is,

if b=cathen|b =|d|d and b = *a (1)
If c<0, the resulting vector has the opposite direction from the original vector.

Vectors may be added to or subtracted from each other; they obey the same algebraic rules
as real numbers under addition and subtraction. Vector addition may be visualized by pic-
turing each vector as an arrow with a length equal to its magnitude, as illustrated below:

11|

Introduction

Figure 1. Addition of Vectors

a+b

a

The opposite of a vector is a vector with the same length but in the opposite direction.

Vectors may not be multiplied in the same sense as real numbers. However, several opera-
tions exist which are distributive and which are therefore spoken of as “productsin-The
ner product(or dot product) of two vectors is a scalar and is written

asb 3

It is defined as the product of the magnitudes of the two vectors and the cosine of the angle
between them, that is,

a+ b = |a|bcosh,, . o 3)
\ ab
a

Thus, the dot product is zero if the vectors are perpendicular. The dot prodiistribu-
tive andcommutativethat is,

as(b+t) = asb+aet (Distributive law) (4)
a*b=bea (Commutative law) (5)
Theouter productbof two vectors is a tensor; it is discussed below.
1.1.2 Tensors

A tensor is a rule that turns a vector into another vector, and it is represented symbolically
by a boldface capital letter, suchas . We write

a = Ab (6)

to indicate that when the tensar is applied to the vegtor , it returns the wector . Not all
rules that turn vectors into other vectors are tensors; a tensor must be linear, that is, it must
be true foralk p , and that

A(a+b) = Aa+Ab 7)

12

Introduction |

and

A(cd) = cAa. (8)

It is customary to regard the vectar in Equations (6) as the product of the tensor and
the vectorb . We say that the vector léft-multipliedby the tensor . It is also possible
to write expressions of the form

¢ = bA (9)
in which the vectob isight-multipliedby the tenson . If

Aa = aB (10)
for all vectorsa , we say that is thansposeof B and write

A =BT. (12)

Tensors may be added and subtracted according to the usual algebraic rules. Addition is
defined such that

A =B+C iff Aa=Ba+Ca foralla (12)
The product of two tensors is defined such that
A = BC iff Aa = B(Ca) forall a (13)

The outer product of two vectors is a tensor and may be written
A =alb (14)
It is defined by

A =alb iff Ac = (bst)a forall ¢ (15)

Note that the outer product is not commutative, unlike the inner product, since

adb= (bO?d)" (16)

Many derived quantities in physics are expressed as tensors. For example, we observe in
the laboratory that a reflective surface exposed to a set of light sources feels a force which
depends on the orientation and area of the surface. If we form a wector whose magnitude
is equal to the surface area and whose direction is perpendicular to the surface, we find
that the force experienced by the surface is given by

f=ps (17)

13 |

Introduction

whereP is a tensor (the radiation pressure tensor) which depends only on the intensity and
location of the light sources relative to the location of the reflective surface.

Likewise, consider a body subjected to deformation. Let the displacement between two
nearby particles in the undeformed body be represented by the wector and the displace-
ment between the same two particles after deformation be represented by theavector
The two vectors are related by the expression

o = Ju (18)

whereJ is called the Jacobian tensor. We note that may be different at different points in
the body.

1.1.3 Symmetric and Antisymmetric Tensors
Many tensors important in physics aygmmetri¢cthat is,

AT = A (19)
Likewise, there are important tensors whichargsymmetrichaving the property

AT = _A . (20)

If a tensor is known to have one of these symmetry properties, calculations involving that
tensor can usually be simplified. In addition, it is sometimes useful to split a full tensor
into symmetric and antisymmetric parts via the formulae

Sym(A) = S(A+AT) (21)

Anti(A) = %(A _AT) (22)

It is easily verified that these two tensors have the indicated symmetry properties and that
A = SymA) + Anti(A) .

1.1.4 Vector and Tensor Components; Indicial Notation

Computers are unable to handle vectors and tensors directly. Their hardware is designed to
add, subtract, multiply, and divide representations of real numbers.

Fortunately we can represent vectors and tensors as sets of real numbers. However, to do
S0, we must establish an arbitrdrgme of referencéMe do this by selecting three mutual-

ly orthogonal directiong § ,andl . These correspond to the x, y, and z axes of a Cartesian
coordinate system. We can then express any vector in the form

a= aX+a,y+agz (23)

14

Introduction |

The three numbers, a, ,ard (themponentsfthe vector) are real numbers and can

be processed by a computer. Using Equation (23), we can represent any vector operation
as a sequence of operations on sets of real numbers. We use the aymbol to represent the
set of real numbers, a, , and

Some computers are optimized to perform calculations on sets of real numbers; computer
scientists refer to these as vector computers, but the word “vector” is not being used in the
sense understood by physicists.

We can write any tensor in the form

A= AROR) +ALKO9) +Ay(x02)
+ Agy(9TR) + A9 0 9) + Ang(910 2) (24)
+ Ay(20 %)+ Ag(209) + Agy(202)

Thus, a computer can treat a tensor as if it was an array of nine real numbers. These real
numbers are spoken of as tbemponent®f the tensor. We represent this set of numbers
by the symbok; .

We thus have a way to handle vectors and tensors on computers, but at a price: we must re-
place each vector and tensor by a set of real numbers and each vector or tensor operation
by a (possibly extensive) sequence of operations on sets of real numbers. This sequence of
operations is written usingdicial notation.For example, the inner or dot product of two
vectors is written in symbolic notation as

r :306_ (25)

It can be written in indicial notation as

3
= Yan. (26)

i=1

wherea, andb, are the components of the vectors fand . Proofs of the equivalence of
the symbolic and indicial representations of vector operations will not be presented in this
report.

1.1.5 Einstein Summation Convention

Sums over all values of an index, such as Equation (26), are so common that it is custom-
ary to adopt the Einstein summation convention. Under this convention, any term in which

an index is repeated, suchas, , is interpreted to mean a sum over all values of the index
i. Thatis,
3
a;b;, (Einstein convention) < a;b; (ordinary usage) (27)

i=1

15 |

Introduction

If more than one index is repeated, we have a multiple sum, e.g.,

3 3
aB;c; (Einstein convention) - Z ZaiBijcj (ordinary usage) (28)
i=1 j=1

We use the Einstein summation convention throughout this report.
1.1.6 Dimensionality

Physical space is three-dimensional. However, in many situations there are translational or
rotational symmetries that reduce the effective dimensionality. PHYSLIB has therefore
been written to accomodates 1-D, 2-D and 3-D calculations. The programmer selects the
dimensionality by defining eith@@NE_DTWO_Dor THREE_Das a preprocessor symbol

in the command line to the C++ compiler.

By selectingONE_Dor TWO_Dthe programmer eliminates certain components from the
vector and tensor representations that are always zero in these cases. For example, under
ONE_Donly thex component of the vector can be nonzero. The elimination of unused
vector and tensor components reduces memory usage and increases run-time performance.

An integer constant, DIMENSION, is set to the number of dimensions (1, 2 or 3) selected
by the programmer.

16

Introduction |

1.2 The C++ Programming Language

One of the characteristics of computational physics programs is their growing complexity.
It is not now uncommon for a production code to exceed one hundred thousand lines in
length when written in traditional programming languages such as FORTRAN. Such huge
codes are also found in the areas of advanced graphics and operating systems.

Large codes are extremely difficult to manage. However, experience shows that proper use
of hierarchiescan reduce the complexity of large codes by orders of magnitude. C++ is an
excellent language for large codes because it fully supports procedure hierarchies, nesting
hierarchies, and inheritance hierarchies [1].

C++ is also the first high-level language with object-oriented capability to become widely

popular. Because well-written C++ code approaches the efficiency of conventional C cod-
ing, C++ may prove to be the language of choice for large scientific computing projects. A
description of the C++ language is beyond the scope of this report. However, we briefly
describe the advantages of C++ below.

The definitive feature of C++ is thelass This is essentially a programmer-defined data
type that supplements the standard data types (suich adloat , ordouble) that are
part of the language. A classdeclared usually in a header file, at which time the compil-
er knows its characteristics; individual variablesrstancesof the class may then be de-
clared by the programmer.

1.2.1 Data Abstraction

A class declaration typically includetata membersind specifies member access rules

The data members are a set of floating numbers, integers, pointers, or instances of simpler
classes. For example, a class representing complex numbers would probably contain two
floating variables as data members: one for the real and one for the imaginary part of the

complex number. Each time a variable of a given class is declared, enough memory is set
aside to hold its data members.

Classes enforce data abstraction. Generally speaking, the data members of a class are di-
rectly accessible only to a set of functions enumerated within the class definition. These
functions are the only place where an instance of a class is not viewed as a coherent object.
The PHYSLIB library is built around the concept of data abstraction.

1.2.2 Special Member Functions and Dynamic Memory Management

The special member functions of a class are utility functions that create, destroy, or assign
values to an instance of a class. Thus, whenever a class variable is declared, a constructor
function is called to initialize the object. Likewise, when a class variable goes out of scope
and is no longer needed, a destructor is called to do any necessary cleanup before its mem-
ory is freed. This makes it possible to carry out sophisticated dynamic memory manage-
ment in a transparent manner. For example, a large array of floating numbers can be
represented by a class with constructor and destructor functions. The constructor func-

17 |

Introduction

tions, which are automatically called when a variable of the array class is declared, can al-
locate the appropriate amount of memory. The destructor, which is automatically called
when the variable goes out of scope, can return the memory to the system. The program-
mer sees none of this; he only writes a constructor and destructor function, and the com-
piler sees to it that they are called at the appropriate times.

PHYSLIB does not make use of such memory management mechanisms, but future re-
ports will discuss how memory management is carried out in more sophisticated classes
used in RHALE++.

If a class has no constructor functions, the compiler simply allocates memory for the data
members whenever an instance of the class is declared. Likewise, if a class has no destruc-
tor function, the compiler simply frees the memory allocated for an instance of a class
when it goes out of scope.

Other special member functions may be declared to assign values to an object. For exam-
ple, an instance of an array class would need to free its old storage area before allocating
new memory to receive a new value. If no assignment function is declared for a class, the
compiler simply copies the values of all the data members when an assignment is made.

1.2.3 Function and Operator Overloading

When data abstraction is implemented in less sophisticated programming languages, the
code tends to dissolve into many calls to a few privileged routines that manipulate individ-
ual components of the various data structures. Many of these routines implement distinct
operations on the data structures that could just as well be represented by arithmetic oper-
ators. For example, if data structures representing complex numbers are used in a C pro-
gram, there will be many calls to functions that implement complex addition and
multiplication.

The C++ language permits programmersterloadthe standard set of operator symbols.

For example, the programmer can declare that the **" operator represents complex multi-
plication when applied to complex variables. This adds a new context-dependent meaning
to this symbol. The compiler can distinguish whether the *’ represents ordinary floating-
point multiplication or complex multiplication by examining the type of its operands.

When an overloaded operator is used in this manner, the compiler replaces it with a call to
the appropriate function defined by the programmer. Thus, the actual machine code gener-
ated is not much different than that described aboveaf@ program. However, the code

the programmer writes is much more aesthetically pleasing; and, when another program-
mer is trying to read and understand the code, aesthetics is everything.

The C++ language permits programmers to overload function names as well as operators.
Every function declaration includes the argument list, as with ANSI C. However, more
than one function with a given name can exist if they have different argument lists. When
one of the functions is called, the compiler selects the correct function based on the types

18

Introduction |

of the arguments. If a function call has an argument list that does not match any function
by that name, the compiler reports an error.

Consider this example of a C code:

#include <math.h>
#include "complex.h"
main(){
struct Complex a ={3., 2.5}, b={2., 0.}, ¢;
¢ = CSqrt(CAdd(CMult(a,a), CMult(b,b)));
fprintf("The result is %f, %f\n", c.Real, c.Imag);
}

This short program evaluates and prints a complicated complex expression. Note the many
function calls needed to implement data abstraction.

In C++ one might have

#include <math.h>
#include "complex.h"
main(){
Complex a(3., 2.5), b(2., 0.), c;
c = sqgrt(a*a + b*b);
fprintf("The result is %f, %f\n", c.Real(), c.Imag());
}

This illustrates how the function calls have been replaced by more transparent operator no-
tation. The actual machine code generated by the compiler replaces the operators with the
appropriate function calls. In addition, tegrt() function has been overloaded; the two
versions arelouble sqgrt(const double) andComplex sqgrt(const Com-

plex) . The first version takes and returns floating point numbers, while the second takes
and returns complex numbers. In the program above, the second version has been used,
which the compiler correctly recognizes from the fact st + b*b is an expression

with typeComplex .

19 |

| [Introduction

The PHYSLIB Library |

2. The PHYSLIB Library

The PHYSLIB library consists of two files: a header fiddyslib.h , and a C++ source
file, physlib.C

The header file contains C++ code that defines the four classes described below. It must be
included at the start of any C++ program that wishes to use these classes. The source file
contains a few large functions that are not appropriate for inlining, and it is compiled and
linked with the users’ code.

Inlining is a way to reduce computation time at the cost of increased memory usage. An
inline function is not actually called whenever it is referenced; instead, a local copy of the
function body is inserted in the calling routine by the compiler. This eliminates the over-

head associated with making a function call and permits global optimizations (such as
vectorization) that are normally inhibited by function calls. The trade-off is that there are

numerous local copies of the function in the code rather than one global copy. If the func-
tion is very simple and is called many times, as is usually the case for PHYSLIB func-

tions, the savings in computation time are worth the increase in memory usage.

In each case, the reference frame is implied by the values used to initialize the vectors and
tensors in a calculation. In addition, it is assumed that all floating numbers are represented
in double precision. This is wasteful on intrinsically double-precision machines such as a
Cray; the Cray version of the library will repladgeuble with float everywhere.

2.1 class Vector

This class represents Cartesian vectors, which are quantities having both magnitude and
direction.

Symbolic Notationa Indicial Notatior

2.1.1 Private Data Members

double x; X component of vectora()
double y; Y component of vectoraf)
double z; Z component of vector{)

The Z component is required even in the 2-D version of the library. This is because
RHALE++ and some other finite element codes use a rotation algorithm that requires vec-
tors with Z components.

2.1.2 Special Member Functions

Vector(void);

21 |

The PHYSLIB Library

Sample code:

Vector a; /I Default constructor called
/I when a is declared

This is the default constructor for instances of Yfextor class. It does nothing
to initialize the vector. It is declared only to let the compiler know that initializa-
tion can be skipped.

Vector(const double, const double, const double);

Sample code:

Vector a(5., 6., 2.);

Construct a vector with the given components.

Vector(const Vector&);

Sample code:

Vector a;
Vector b = a; // Construct and initialize

This is the copy constructor for objects of class Vector. It is defined mainly to en-
hance vectorization on CRAY computers.

Vector& operator=(const Vector&);

Sample code:

Vector a, b;
a=bh;

This is the assignment operator for objects of class Vector. It is defined mainly to
enhance vectorization on CRAY computers.

double X(void) const;

Symbolic notationa -« % Indicial notatiory,

Sample code:

22

Vector a;

The PHYSLIB Library

printf("The X component of a is %f\n", a.X());

double Y(void) const;

Symbolic notationa- §
Sample code:

Vector a;

Indicial notatiors,

printf("The Y component of a is %f\n", a.Y());

double Z(void) const;

Symbolic notationa- z
Sample code:

Vector a;

Indicial notatiors,

printf("TheZ component of a is %f\n", a.Z());

void X(const double);

Symbolic notation: None

Sample code:

Vector a;

a.X(2.);

void Y(const double);

Symbolic notation: None

Sample code:

Vector a;
a.Y(2.);

void Z(const double);

Indicial notation; — s

/I set X component of a to 2.

Indicial notation, — s

I/l set' Y component of ato 2.

23

The PHYSLIB Library

Symbolic notation: None Indicial notation; — s

Sample code:

Vector a;

a.zZ(2.); Il set Z component of a to 2.

Provide access to the components of a vector. This is required chiefly for I/O but
is also a means for letting future classes work with vectors without requiring a
huge list of friend functions in the vector class definition. It does not violate the
idea of data abstraction, since nonprivileged functions must still access the com-
ponents of a vector through a functional interface.

2.1.3 Utility Functions

24

int fread(Vector&, FILE*);
int fwrite(const Vector&, FILE™);
int fread(Vector*, int, FILE?*);

int fwrite(const Vector*, const int, FILE?*);

Sample code:

Vector a, b, c[2], d[5];
FILE* InFile, OutFile;
fread (a, InFile);
fread (c, 2, InFile);
fwrite (b, OutFile);
fwrite (d, 5, OutFile);

These overloads provide a convenient interface tdrébed() andfwrite()
library functions for binary input/output. The second version of each is intended
for arrays of vectors (e.gvector c[2]; declares an array of two vectors).

These functions were written to be as consistent as possible with the standard
fread() andfwrite() functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written.

The PHYSLIB Library |

2.2 class Tensor

This class represents general Cartesian 2nd-order tensors. In the 2-D version, the off-diag-
onal ztermsa;; A, A, ,and,, are omitted. The diagonal z texgy, ,is needed in 2-D
finite element codes.

Symbolic notationa Indicial notation;

2.2.1 Private Data Members

double xx; XX component of tenson(;,)
double xy; Xy component of tensor(,)
double xz; Xz component of tenson{;)
double yx; yz component of tenson{,)
double yy; yy component of tensorf,)
double yz; yz component of tenson{;)
double zx; zx component of tenson{,)
double zy; zy component of tensonf,)
double zz; zz component of tensoAf;)

2.2.2 Special Member Functions

Tensor(void);
Sample code:
Tensor a; /I Declare an uninitialized
/l tensor.

Default constructor for instances of fhensor class.

Tensor(const double, const double, const double, const
double, const double, const double, const double,
const double, const double);

Sample code:

Tensor a(2., 3., 5.,

25 |

The PHYSLIB Library

4.,6., 4.,
1.,9., 11.);

Construct a tensor with the given components. The arguments corresponding to
off-diagonal z terms are omitted in the 2-D version.

Tensor(const Tensor&);

Sample code:

Tensor a;
Tensor b = a; /I Construct and initialize

This is the copy constructor for objects of class Tensor. It is defined mainly to en-
hance vectorization on CRAY computers.

Tensor& operator=(const Tensor&);

Sample code:

Tensor a, b;
a=bh;

This is the assignment operator for objects of class Tensor. It is defined mainly to
enhance vectorization on CRAY computers.

Tensor(const SymTensor&);
Tensor(const AntiTensor&);

Sample code:

SymTensor a;
AntiTensor b;
Tensorc=a, d=Db;

Convert a symmetric or antisymmetric tensor to full tensor representation. These
operators become standard conversions that the compiler invokes implicitly
where needed. However, most operators are explicitly defined for mixed tensor
types, since this is more efficient.

26

The PHYSLIB Library |

These conversions are somewhat dangerous, since useless operations such as
Trans(SymTensor) or Tr(AntiTensor) will be accepted by the compiler.

The worst consequence of permitting these conversions is that operations such as
Inverse(AntiTensor) will be attempted and result in a singular matrix er-

ror. The RHALE++ development team felt that, since these conversions are so
natural, they should be included in PHYSLIB in spite of the potential dangers.

Tensor& operator=(const SymTensor&);
Tensor& operator=(const AntiTensor&);

Sample code:

SymTensor a;

AntiTensor b;

Tensor ¢, d;
c=a;
d=b;

Assign a symmetric or antisymmetric tensor value to a preexisting tensor vari-
able. If these operations were not defined, the compiler would call the conversion
constructors defined above and assign the result, which is less efficient than as-
signing the values directly.

double XX(void) const;

Symbolic notationkAx Indicial notatiom,,
Sample code:

Tensor A;

printf("The XX component of A is %f", A.XX());

double XY (void) const;

Symbolic notationkA§y Indicial notatiom,,
Sample code:

Tensor A;

27 |

The PHYSLIB Library

printf("The XY component of A is %f", A.XY());

double XZ(void) const;
Symbolic notationgAz Indicial notatiom,,
Sample code:

Tensor A;

printf("The XZ component of A is %f", A.XZ());

double YX(void) const;

Symbolic notationgAx Indicial notatiom,,

Sample code:

Tensor A,
printf("The YX component of A is %f", A.YX());

double YY(void) const;

Symbolic notationgA§y Indicial notatiom,,

Sample code:

Tensor A,
printf("The YY component of A is %f", A.YY());

double YZ(void) const;

Symbolic notationgAz Indicial notationa,;
Sample code:

Tensor A;

printf("The YZ component of A is %f", A.YZ());

double ZX(void) const;

28

The PHYSLIB Library

Symbolic notationzAx Indicial notatiom,,

Sample code:

Tensor A;

printf("The ZX component of A is %f", A.ZX());

double ZY(void) const;

Symbolic notationzA§y Indicial notatiom,,

Sample code:

Tensor A,
printf("The ZY component of A is %f", A.ZY());

double ZZ(void) const;

Symbolic notationzAz Indicial notationa;
Sample code:

Tensor A;

printf("The ZZ component of A is %f", A.ZZ());

void XX(const double);

Symbolic notation: None Indicial notation;; ~ s

Sample code:

Tensor A;

A.XX(3.); /Il Set XX component of A to 3.

void XY (const double);

Symbolic notation: None Indicial notation;, — s

Sample code:

Tensor A;

29

The PHYSLIB Library

AXY(3.);

void XZ(const double);

Symbolic notation: None

Sample code:

Tensor A;

AXZ(3.):

void YX(const double);

Symbolic notation: None

Sample code:

Tensor A;

AYX(3.);

void YY(const double);

Symbolic notation: None

Sample code:

Tensor A;
AYY(3));

void YZ(const double);

Symbolic notation: None

Sample code:

Tensor A;
AYZ(3.);

void ZX(const double);

Symbolic notation: None

30

/I Set XY component of A to 3.

Indicial notation;; — s

I/l Set XZ component of A to 3.

Indicial notation,, — s

/I Set YX component of A to 3.

Indicial notation,, — s

I/l Set YY component of A to 3.

Indicial notation,; — s

/I Set YZ component of A to 3.

Indicial notation;, — s

The PHYSLIB Library |

Sample code:

Tensor A;

A.ZX(3.); /I Set ZX component of A to 3.

void ZY(const double);

Symbolic notation: None Indicial notation;, — s

Sample code:

Tensor A;

A.ZY(3.); /I Set ZY component of A to 3.

void ZZ(const double);

Symbolic notation: None Indicial notationy; — s

Sample code:

Tensor A;

A.ZZ(3.); /I Set ZZ component of A to 3.

Provide access to components of a tensor through a functional interface. The
functions corresponding to off-diagonal z terms do not exist in the 2-D version of
the library, since these components always vanish in 2-D finite element codes.

2.2.3 Utility Functions

int fread(Tensor&, FILE?);
int fwrite(const Tensoré&, FILE?*);
int fread(Tensor*, int, FILE*);
int fwrite(const Tensor*, const int, FILE*);
Sample code:
Tensor a, b, c[2], d[5];
FILE* InFile, OutFile;
fread (a, InFile);

fread (c, 2, InFile);

31 |

The PHYSLIB Library

fwrite (b, OutFile);

fwrite (d, 5, OutFile);

These overloads provide a convenient interface tdréaed()

library functions for binary input/output.

andfwrite()

These functions were written to be as consistent as possible with the standard

fread() andfwrite()

functions. Thus, they are friends rather than member

functions, and the integer returned is the number of objects read or written.

2.3 class SymTensor

This class represents symmetric tensors. By providing a separate representation of sym-
metric tensors, we save both memory and computation time, since a symmetric tensor has
fewer independent components. Since symmetric tensor are simply a special case of gen-
eral tensors, they share the same notation and operations.

Symbolic notationA

2.3.1 Private Data Members
double xx;
double xy;
double xz;
double yy;
double yz;

double zz;

Indicial notations,

XX component of a symmetric tense,()
Xy component of a symmetric tenseg (= A,
Xz component of a symmetric tensag,(= Ay,
yy component of a symmetric tensag{)
yz component of a symmetric tensag,(= A;,

zz component of a symmetric tensag,()

2.3.2 Special Member Functions

SymTensor(void);

Sample code:

SymTensor a;

32

/I Construct an uninitialized

Il SymTensor.

)
)

)

The PHYSLIB Library |

Default constructor for instances of the cl&gsnTensor .

SymTensor(const double, const double, const double,
const double, const double, const double);

Sample code:

SymTensor a(1., 5., 3.,
4., 6.,
5.);

Construct a symmetric tensor with the given components. The arguments corre-
sponding to off-diagonal z components are omitted in the 2-D version.

SymTensor(const SymTensor&);

Sample code:

SymTensor a;
SymTensor b = a; /[Construct and initialize

This is the copy constructor for objects of class SymTensor. It is defined mainly
to enhance vectorization on CRAY computers.

SymTensor& operator=(const SymTensor&);

Sample code:

SymTensor a, b;
a=b;

This is the assignment operator for objects of class SymTensor. It is defined
mainly to enhance vectorization on CRAY computers.

double XX(void) const;

Symbolic notationkAx Indicial notatiom,,

Sample code:

33 |

The PHYSLIB Library

SymTensor A,
printf("The XX component of A is %f", A.XX());

double XY (void) const;
Symbolic notationkA§y Indicial notatioma,,
Sample code:

SymTensor A;
printf("The XY component of A is %f", A.XY());

double XZ(void) const;

Symbolic notationkAz Indicial notatiom,;
Sample code:

SymTensor A;
printf("The XZ component of A is %f", A.XZ());

double YY(void) const;

Symbolic notationgA§y Indicial notatiom,,

Sample code:

SymTensor A,
printf("The YY component of A is %f", A.YY());

double YZ(void) const;

Symbolic notationgAz Indicial notatiom,;

Sample code:

SymTensor A,
printf("The YZ component of A is %f", A.YZ());

34

The PHYSLIB Library |

double ZZ(void) const;
Symbolic notationzaz Indicial notation,;,
Sample code:

SymTensor A;
printf("The ZZ component of A is %f", A.ZZ());

void XX(const double);

Symbolic notation: None Indicial notation;; — s

Sample code:

SymTensor A,
A.XX(3.); /I Set XX component of A to 3.

void XY(const double);

Symbolic notation: None Indicial notation;, — s
Sample code:

SymTensor A,

A.XY(3.); /I Set XY component of A to 3.

void XZ(const double);

Symbolic notation: None Indicial notatioRn;; — s
Sample code:

SymTensor A,

A.XZ(3.); /I Set XZ component of A to 3.

void YY(const double);

Symbolic notation: None Indicial notation,, — s

Sample code:

35 |

The PHYSLIB Library

SymTensor A,
AYY(3.);

void YZ(const double);

Symbolic notation: None

Sample code:

SymTensor A,
A.YZ(3.);

void ZZ(const double);

Symbolic notation: None

Sample code:

SymTensor A;
A.ZZ(3.);

/I Set YY component of A to 3.

Indicial notationy; — s

/I Set YZ component of A to 3.

Indicial notation; — s

/I Set ZZ component of A to 3.

Provide access to components of a symmetric tensor through a functional inter-
face. The functions corresponding to off-diagonal z terms do not exist in the 2-D
version of the library, since these components always vanish in 2-D finite element

codes.

2.3.3 Utility Functions

int fread(SymTensor&, FILE?);

int fwrite(const SymTensor&, FILE?*);

int fread(SymTensor*, int, FILE?*);

int fwrite(const SymTensor*, const int, FILE*);

Sample code:

SymTensor a, b, c[2], d[5];

FILE* InFile, OutFile;

fread (a, InFile);

The PHYSLIB Library |

fread (c, 2, InFile);
fwrite (b, OutFile);
fwrite (d, 5, OutFile);

These overloads provide a convenient interface tdrébed() andfwrite()

library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread() andfwrite() functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written.

2.4 class AntiTensor

This class represents antisymmetric tensors. By providing a separate representation, we
save quite a lot of memory and computation time. Since antisymmetric tensors are a spe-

cial case of general tensors, the notation and operators are identical.

Symbolic notationa Indicial notatior;

2.4.1 Private Data Members

double xy; Xy component of the tensok = -A,;
double xz; Xz component of the tensox,§ = -A;;
double yz; yz component of the tensok,§ = —A,,

2.4.2 Special Member Functions

AntiTensor(void);

Sample code:

AntiTensor A; // Construct an uninitialized
/I AntiTensor

Default constructor for instances of the clas$iTensor

AntiTensor(const double, const double, const double);

)
)
)

37 |

The PHYSLIB Library

Sample code:

AntiTensor A(-2., -3., -1.);

Construct an antisymmetric tensor with the given components. The second and
third arguments are omitted in 3-D.

AntiTensor(const AntiTensor&);

Sample code:

AntiTensor a;
AntiTensor b = a; // Construct and initialize

This is the copy constructor for objects of class AntiTensor. It is defined mainly
to enhance vectorization on CRAY computers.

AntiTensor& operator=(const AntiTensor&);

Sample code:

AntiTensor a, b;
a=bh;

This is the assignment operator for objects of class AntiTensor. It is defined
mainly to enhance vectorization on CRAY computers.

double XY (void) const;

Symbolic notationkA§y Indicial notatiom,,

Sample code:

AntiTensor A;
printf("The XY component of A is %f", A.XY());

double XZ(void) const;

Symbolic notationgAz Indicial notatiom,

Sample code:

38

The PHYSLIB Library |

AntiTensor A;
printf("The XZ component of A is %f", A.XZ());

double YZ(void) const;

Symbolic notationgA?z Indicial notationa,;
Sample code:

AntiTensor A,
printf("The YZ component of A is %f", A.YZ());

void XY (const double);

Symbolic notation: None Indicial notation;, — s
Sample code:

AntiTensor A;

A.XY(3.); /I Set XY component of A to 3.

void XZ(const double);

Symbolic notation: None Indicial notation;; — s

Sample code:

SymTensor A;
A.XZ(3.); /I Set XZ component of A to 3.

void YZ(const double);

Symbolic notation: None Indicial notation,; — s

Sample code:

AntiTensor A,
A.YZ(3.); /I Set YZ component of A to 3.

39 |

| The PHYSLIB Library

Provide access to components of an antisymmetric tensor through a functional in-
terface. The functions corresponding to off-diagonal z terms do not exist in the 2-
D version of the library, since these components always vanish in 2-D finite ele-
ment codes.

2.4.3 Utility Functions

int fread(AntiTensor&, FILE*);

int fwrite(const AntiTensor&, FILE?);

int fread(AntiTensor*, int, FILE*);

int fwrite(const AntiTensor*, const int, FILE?*);

Sample code:

AntiTensor a, b, c[2], d[5];
FILE* InFile, OutFile;
fread (a, InFile);

fread (c, 2, InFile);

fwrite (b, OutFile);

fwrite (d, 5, OutFile);

These overloads provide a convenient interface tdrbed() andfwrite()
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread() andfwrite() functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written.

The PHYSLIB Library |

2.5 Operator Overload Functions

Vector operator-(void) const;

Symbolic notation:a Indicial notation:a,
Sample code:

Vector a, b;

a=-b;

Return the opposite of a vector.

Tensor operator-(void) const;
SymTensor operator-(void) const;
AntiTensor operator-(void) const;

Symbolic notation:-A Indicial notation:A;

Sample code:
Tensor A, B;
A =-B;

Return the opposite of a tensor.

Vector operator*(const Vector&, const double);

Vector operator*(const double, const Vector&);

Symbolic notationac Indicial notatiors,c

Sample code:

Vector a, b;
double c;

a=b*c;

Return the product of a scalar and a vector. This operation commutes (as can be
seen from its indicial representation) but C++ makes no assumptions about com-
multivity of operations; hence, both orderings must be defined. dbesassume

41 |

The PHYSLIB Library

the usual rules of associativity for overloaded operators (dilléc means
(a*b)*c or (a- b)c).

Vector& operator*=(const double);

Symbolic notationa - ac Indicial notatiors, — a,c
Sample code:

Vector a;
double c;
a*=c;

Replace a vector by its product with a scalar.

Vector operator/(const Vector&, const double);

Symbolic notationa/c Indicial notatiory,/c

Sample code:

Vector a, b;
double c;
a=blc;

Return the quotient of a vector with a scalar. The caseo results in a divide-
by-zero error, which is handled differently on different computers.

Vector& operator/=(const double);

Symbolic notationa - &/ ¢ Indicial notatiory; — a;/c

Sample code:

Vector a;
double c;
al=c;

Replace a vector by its quotient with a scalar. The ecase results in a divide-
by-zero error, which is handled differently on different computers.

42

The PHYSLIB Library |

double operator*(const Vector&, const Vector&);
Symbolic notationa« b Indicial notatiors;b;
Sample code:

Vector a, b;
double c;
c=a*b;

Return the dot or inner product of two vectors.

Tensor operator%(const Vector&, const Vector&);
Symbolic notationan b Indicial notation b
Sample code:

Vector a, b;
Tensor c;
c=a%hb;

Return the tensor or outer product of two vectors. The operétoepresents the
modulo operation when applied to integers. It was selected to represent the outer
product of vectors because the compiler assigns it the same precedence as multi-
plication.

Vector operator+(const Vector&, const Vector&);
Symbolic notationa + b Indicial notatiory; + b
Sample code:

Vector a, b, c;
a=b+c;

Return the sum of two vectors.

43 |

The PHYSLIB Library

Vector& operator+=(const Vector&);
Symbolic notationa — a+ b Indicial notatiors; — a; + b
Sample code:

Vector a, b;
a+=Db;

Replace a vector by its sum with another vector.

Vector operator-(const Vector&, const Vector&);
Symbolic notationa-b Indicial notatiors; — b
Sample code:

Vector a, b, c;
a=b-c;

Return the difference of two vectors.

Vector& operator-=(const Vector&);
Symbolic notationa — a-b Indicial notatiors, — a, —b;
Sample code:

Vector a, b;
a-=b;

Replace a vector by its difference with a vector.

int operator==(const Vector&, const Vector&);

Symbolic notationa==b Indicial notations;==b;

Sample code:

Intis_equal;

Vector a, b;

44

The PHYSLIB Library |

is_equal = (a == b);

Determine if two vectors are equal.

int operator!=(const Vector&, const Vector&);

Symbolic notationa# b, Indicial notationa, # b,

Sample code:

Int is_unequal;
Vector a, b;
is_unequal = (a != b);

Determine if two vectors are unequal.

ostreamé& operator<<(ostreamé&, const Vector&);

Sample code:

Vector a;
ofstream str("output.dat™);
str << a;

Write a vector to an output stream in the form (x,y,z).

istream& operator>>(istreamé&, Vector&);

Sample code:

Vector a;
ifstream str("input.dat");
str >> a;

Read a vector from an input stream in the form (x,y,z).

Tensor operator*(const Tensor&, const double);

SymTensor operator*(const SymTensor&, const double);

45 |

The PHYSLIB Library

AntiTensor operator*(const AntiTensor&, const double);
Tensor operator*(const double, const Tensor&);
SymTensor operator*(const double, const SymTensor&);
AntiTensor operator*(const double, const AntiTensor&);
Symbolic notationAc Indicial notation;c

Sample code:

Tensor A, B;
double c;
B=A*c;

Return the product of a tensor with a scalar.

Tensor& operator*=(const double);
SymTensor& operator*=(const double);
AntiTensor& operator*=(const double);

Symbolic notationA — Ac Indicial notatiom; — A;c
Sample code:

Tensor A;
double c;
A*=c;

Replace a tensor by its product with a scalar.

Tensor operator/(const Tensor&, const double);
SymTensor operator/(const SymTensor&, const double);
AntiTensor operator/(const AntiTensor&, const double);

Symbolic notationA/c Indicial notation;/c
Sample code:

Tensor A, B;

46

The PHYSLIB Library |

double c;
B =Alc;

Return the quotient of a tensor with a scalar. The case results in a divide-
by-zero error, which is handled differently by different computers.

Tensor operator/=(const double);
SymTensor& operator/=(const double);
AntiTensor& operator/=(const double);

Symbolic notationA — A/c Indicial notatioms; — A;/c

Sample code:

Tensor A;
double c;
Al=c;

Replace a tensor by its quotient with a scalar. The cas® results in a divide-
by-zero error, which is handled differently by different computers.

Vector operator*(const Tensor&, const Vector&);
Vector operator*(const AntiTensor&, const Vector&);

Vector operator*(const SymTensor&, const Vector&);

Symbolic notationAb Indicial notatiors;;b;

Sample code:

Tensor A;
Vector b, c;
c=A*b;

Return the result of left-multiplying a vector by a tensor. There are three cases,
corresponding to the three varieties of tensor implemented in PHYSLIB; all are
identical in notation and usage, however.

Vector operator*(const Vector&, const Tensor&,);

47 |

The PHYSLIB Library

Vector operator*(const Vector&, const AntiTensor&);
Vector operator*(const Vector&, const SymTensor&);

Symbolic notationaB Indicial notatior;B;

Sample code:

Vector a;
Tensor b, c;
c=a*b;

Return the result of right-multiplying a vector by a tensor.

Tensor operator*(const Tensor&, const Tensor&);

Tensor operator*(const SymTensor&, const Tensor&);
Tensor operator*(const Tensor&, const SymTensor&);
Tensor operator*(const SymTensor&, const SymTensor&);
Tensor operator*(const AntiTensor&, const Tensor&);
Tensor operator*(const Tensor&, const AntiTensor&);
Tensor operator*(const AntiTensor&, const SymTensor&);
Tensor operator*(const SymTensor&, const AntiTensor&);

Symbolic notationAB Indicial notatiors;;B;,

Sample code:

Tensor A, B, C;
C=A*B:;

Return the product of a tensor with a tensor.

Tensor operator+(const Tensor&, const Tensor&);

Tensor operator+(const SymTensor&, const Tensor&);

Tensor operator+(const Tensor&, const SymTensor&);
SymTensor operator+(const SymTensor&, const SymTensor&);

Tensor operator+(const AntiTensor&, const Tensor&);

48

The PHYSLIB Library

Tensor operator+(const Tensor&, const AntiTensor&);
Tensor operator+(const AntiTensor&, const SymTensor&);
Tensor operator+(const SymTensor&, const AntiTensor&);

AntiTensor operator+(const AntiTensor&, const AntiTen-
Sor&);

Symbolic notationA +B Indicial notatior; + B;

Sample code:

Tensor A, B, C;
C=A+B;

Return the sum of two tensors.

Tensor& operator+=(const Tensor&);
Tensor& operator+=(const SymTensor&);
SymTensor& operator+=(const SymTensor&);
Tensor& operator+=(const AntiTensor&);
AntiTensor& operator+=(const AntiTensor&);

Symbolic notationA — A+B Indicial notatiors; — A; +B;
Sample code:

Tensor A, B;
A +=B;

Replace a tensor by its sum with another tensor.

Tensor operator-(const Tensor&, const Tensor&);

Tensor operator-(const SymTensor&, const Tensor&);

Tensor operator-(const Tensor&, const SymTensor&);
SymTensor operator-(const SymTensor&, const SymTensor&);
Tensor operator-(const AntiTensor&, const Tensor&);

Tensor operator-(const Tensor&, const AntiTensor&);

49

The PHYSLIB Library

Tensor operator-(const AntiTensor&, const SymTensor&);
Tensor operator-(const SymTensor&, const AntiTensor&);

AntiTensor operator-(const AntiTensor&, const AntiTen-
Sor&);

Symbolic notationA-B Indicial notationa; - B;;

Sample code:
Tensor A, B, C;
C=A-B;

Return the difference of two tensors.

Tensor& operator-=(const Tensor&);
Tensor& operator-=(const SymTensor&);
SymTensor& operator-=(const SymTensor&);
Tensor& operator-=(const AntiTensor&);
AntiTensor& operator-=(const AntiTensor&);

Symbolic notationA — A-B Indicial notatiom; — A; -B;
Sample code:

Tensor A, B;
A -=B:;

Replace a tensor by its difference with another tensor.

int operator==(const Tensor&, const Tensor&);
int operator==(const SymTensor&, const SymTensor&);

int operator==(const AntiTensor&, const AntiTensor&);

Symbolic notationa==b Indicial notations;==b;

Sample code:

Intis_equal;

50

The PHYSLIB Library |

Vector a, b;
is_equal = (a ==b);

Determine if two vectors are equal..

int operator!=(const Tensor&, const Tensor&);
int operator!=(const SymTensor&, const SymTensor&);

int operator!=(const AntiTensor&, const AntiTensor&);

Symbolic notationa# b, Indicial notationa, # b,

Sample code:

Int is_unequal;
Vector a, b;
is_unequal = (a!=b);

Determine if two vectors are unequal..

51 |

The PHYSLIB Library

2.6 Methods
Vector Cross(const Vector&, const Vector&);
Symbolic notationa x b Indicial notatior;;, a;b,
Sample code:

Vector a, b, c;
¢ = Cross(a, b);

Vector or cross product of two vectors. The symbgl is the permutation sym-

bol, which is O if any of the j , ok are equal, 1 if they are an even permutation
of the sequence 1, 2, 3, and -1 if they are an odd permutation of the sequence 1, 2,
3. For exampleg,,, = 0 ¢, =1 ;ane, ;= -1 . The cross product is distributive

and associative but not commutative.

Vector Dual(const Tensor&);
Symbolic notationDualA) Indicial notatior;; A,
Sample code:

Tensor A,
Vector b;
b = Dual(A);
Any tensorA can be split into a symmetric p%(TA +AT) and an antisymmetric

part %(A —-AT) . The dual of a tensor is a vector which depends uniquely on its
antisymmetric part.

AntiTensor Dual(const Vector&);
Symbolic notationDuaka) Indicial notatiore;, a,
Sample code:

Vector a;
AntiTensor B;

B = Dual(a);

52

The PHYSLIB Library |

Dual of a vector. It can be proved thatialDua(a)) = 2a . The concept of the dual
is closely related to the cross product, sibbeald) = ax b

double Norm(const Vector&);

Symbolic notationial Indicial notationya;a;
Sample code:

Vector a;

double b;

b = Norm(a);

Returns the magnitude or norm of a vector. This is calculated as the square root
of the dot product of the vector with itself.

double Norm(const Tensor&);
double Norm(const SymTensor&);

double Norm(const AntiTensor&);

Symbolic notationiA| Indicial notationjA; A;
Sample code:

Tensor A,

double c;

¢ = Norm(A);

Returns the norm of a tensor. This is calculated as the square root of the scalar
product of the tensor with itself.

double Det(const Tensor&);

double Det(const SymTensor&);

Symbolic notation:defA] Indicial notatiorés”kslnmA“Aijkn
ij

Sample code:

Tensor A;

53 |

The PHYSLIB Library

double c;
c = Det(A);

Determinant of a tensor. It is always zero for an antisymmetric tensor.

Tensor Inverse(const Tensor&);

SymTensor Inverse(const SymTensor&);
Symbolic notationa-t
Sample code:

Tensor A, B;
B = Inverse(A);

Inverse of a tensor. If the tensor is singular, a divide-by-zero error will result
(which may be ignored on machines using the IEEE floating point standard). An-
tisymmetric tensors are always singular.

double Tr(const Tensor&);
double Tr(const SymTensor&);

Symbolic notationTrA Indicial notatiom,,

Sample code:

Tensor A;
double c;
c =Tr(A);

Trace of a tensor. The trace of an antisymmetric tensor is always zero.

Tensor Trans(const Tensor&);
Symbolic notationa™ Indicial notatiom,,
Sample code:

Tensor A, B;
B = Trans(A);

54

The PHYSLIB Library |

Transpose of a tensor. By definition, the transpose of a symmetric tensor is the
tensor, while the transpose of an antisymmetric tensor is the opposite of the ten-
sor.

SymTensor Sym(const Tensor&);

Symbolic notation:%(A +AT) Indicial notation%(Aij +A;)

Sample code:

Tensor A, B;
B = Sym(A);

Symmetric part of a tensor.

AntiTensor Anti(const Tensor&);

Symbolic notation:%(A —AT) Indicial notation%(Aij -A;)

Sample code:

Tensor A, B;
B = Anti(A);

Antisymmetric part of a tensor.

double Colon(const Tensor&, const Tensor&);

double Colon(const Tensor&, const SymTensor&);
double Colon(const SymTensor&, const Tensor&);
double Colon(const SymTensor&, const SymTensor&);
double Colon(const Tensor&, const AntiTensor&);
double Colon(const AntiTensor&, const Tensor&);
double Colon(const AntiTensor&, const AntiTensor&);

Symbolic notationA:B Indicial notation; B;

Sample code:

55 |

The PHYSLIB Library

Tensor A, B;
double c;
c = Colon(A, B);

Inner or scalar product of two tensor, also writtefATB) . The scalar product of
a symmetric and an antisymmetric tensor is always zero.

Tensor Deviator(const Tensor&);

SymTensor Deviator(const SymTensor&);

Symbolic notation:A —%Tr(A)l Indicial notatior; —%Akkéij

Sample code:

Tensor A, B;
B = Deviator(A);

Deviatoric part of a tensor. The tensbr is the identity tensor, which is the unique
tensor that transforms any vector into itself and whose components are represent-
ed by the Kronecker delt&;, . The deviator of an antisymmetric tensor is the ten-

sor itself.

double It(const Tensor&);
double It(const SymTensor&);
double It(const AntiTensor&);

Symbolic notation1, = Tr(A) Indicial notatiom,,

Sample code:

Tensor A,

double c;

c = It(A);
double llt(const Tensor&);
double llit(const SymTensor&);

double llt(const AntiTensor&);

56

The PHYSLIB Library |

Symbolic notation: 11, = %(\A\Z—(TrA)Z) Indicial notation%(AijA” —(AW?)

Sample code:

Tensor A;
double c;

¢ = lIt(A);

double lllt(const Tensor&);
double lllt(const SymTensor&);

double Ilit(const AntiTensor&);

Symbolic notation1il , = DetA Indicial notatior‘és”ks,mnA”Aijkn

Sample code:

Tensor A;
double c;
c = lt(A);

Scalar invariants of a tensor. These are the coefficients appearing in the character-
istic equation of a tensor. They are the only three independent scalars that can be
formed in a frame-independent manner from a single tensor; all other scalars that
can be formed from a tensor are functions of the scalar invariants.

The first invariant is a synonym for the trace; the third is a synonym for the deter-
minant. Only the second invariant is nonzero for an antisymmetric tensor.

The characteristic equation itself takes the form
A—IA2—Il A=, =0 (29)
and its roots are the principal values of the tensor.

Tensor Eigen(const SymTensor&, Vector&);

This function returns the orthonormal tensor whose columns are the eigenvectors
of the given symmetric matrix. The principal values are placed in the vector spec-
ified by the second argument. Thus, if

A = Eiger(B, e) (30)

SYA |

The PHYSLIB Library

then

D = ATBA (31)

is a diagonal tensor whose elements are given by the ector

2.7 Predefined Constants

58

const int DIMENSION = 3;

This is an integer constant giving the dimensionality of the library. It is defined to
be equal to 2 if the 2-D version of the library is being used.

extern const Vector ZeroVector;

extern const Tensor ZeroTensor;

extern const AntiTensor ZeroAntiTensor;
extern const SymTensor ZeroSymTensor;

These are objects of the various classes whose components are all zero.

extern const Tensor IdentityTensor;
extern const SymTensor ldentitySymTensor;

These are objects of the given classes corresponding to the identity tensor, which
is the tensor that transforms any vector into itself. The off-diagonal components
are zero and the diagonal components are equal to one in any coordinate system.
The identity tensor is symmetric and is given in both symmetric and full tensor
representations.

The PHYSLIB Library |

(This page intentionally left blank)

59 |

| The PHYSLIB Library

Using the PHYSLIB classes |

3. Using the PHYSLIB classes

The classes defined in PHYSLIB are essentially new arithmetic types analogous to the
predefinednt, float, anddouble types. Their use is illustrated by the program
fragment below:

#include “physlib.h” /l The example is 3-D

r* .. *

const Tensor One(1., 0., 0.,

0.,1.,0.,
0., 0., 1.);

Tensor GradVel; /I Velocity gradient
SymTensor Deformation, deformation, Stretch, Stress;
AntiTensor W, Omega;

Vector omega,

r*.. %

Deformation = Sym(GradVel);
W = Anti(GradVel);

[* Integrate rotation and stretch tensors */

omega = 2.*Inverse(Tr(Stretch)*One - Stretch) *

Dual(GradVel*Stretch);

Omega = 0.5*Dual(omega);

Rotation = Inverse(One - 0.5*delT*Omega)*(One +

61 |

Using the PHYSLIB classes

0.5*delT*Omega)*Rotation;

Stretch += Sym(delT*(GradVel*Stretch-Stretch*Omega));

/* Calculate unrotated deformation and determine rotated
stress */

deformation = Sym(Trans(Rotation)*Deformation*

Rotation);

Stress = Sym(Rotation *

ComputeStress(deformation, delT) * Trans(Rotation));

This particular program fragment is taken from the internal forces routine in RHALE++.
The velocity gradient is decomposed into its rotation and stretch rate components, the ro-
tation and stretch are updated to the new time, and the deformation rate is rotated to the
material configuration for the calculation of the new stress (which is done in the user-de-
fined routineSymTensor ComputeStress(SymTensor&, double)). The new

stress is then rotated back to the laboratory configuration.

3.1 Useless Operations

Certain operations are mathematically well-defined but useless. For example, the trace or
the determinant of an antisymmetric tensor is well-defined but trivially zero. The trans-
pose of a symmetric tensor is itself. These operations are not explicitly defined in
PHYSLIB, but if the programmer were to write code such as

Antitensor a;
double b;
...

b =Tr(a);

the code would compile and run normally. The compiler recognizes that there is a standard
conversion fromAntiTensor to Tensor . This conversion is called fa and the result
is passed tar(Tensor) , which returns the correct value of 0.

Obviously, programmers should avoid such useless constructs, since they needlessly con-
sume time and memory. However, instantiationte&plate functionsnay require such
constructs, and the standard conversion$aasor will ensure that these compile and

run successfully.

62

References

[1] M.A.Ellis and B.StroustrupThe Annotated C++ Reference ManuaP90. Reading,
MA: Addison-Wesley Publishing Company.

[2] L.E.Malvern,Introduction to the Mechanics of a Continuous Medil®69. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc.

63

64

(This page intentionally left blank)

Index of Operators and Functions

A

AntiTensor Anti(const Tensor) 55

AntiTensor Dual(const Vector) 52

AntiTensor operator-(const AntiTensor, const AntiTensor) 50
AntiTensor operator-(void) 41

AntiTensor operator*(const AntiTensor, const double) 46
AntiTensor operator*(const double, const AntiTensor) 46
AntiTensor operator+(const AntiTensor, const AntiTensor) 49
AntiTensor operator/(const AntiTensor, const double) 46
AntiTensor& operator*=(const double) 46

AntiTensor& operator+=(const AntiTensor) 49

AntiTensor& operator/=(const double) 47

AntiTensor& operator=(const AntiTensor&) 38

AntiTensor& operator-=(const AntiTensor) 50
AntiTensor(const AntiTensor&) 38

AntiTensor(const double, const double, const double) 37
AntiTensor(void) 37

D

double Colon(const AntiTensor, const AntiTensor) 55
double Colon(const SymTensor, const SymTensor) 55
double Colon(const Tensor, const Tensor) 55
double Det(const SymTensor) 53

double Det(const Tensor) 53

double Illt(const AntiTensor&) 57

double Illt(const SymTensor&) 57

double lllt(const Tensor&) 57

double Ilit(const AntiTensor&) 56

double llit(const SymTensor&) 56

double llt(const Tensor&) 56

double It(const AntiTensor&) 56

double It(const SymTensor&) 56

double It(const Tensor&) 56

double Norm(const Vector) 53

double operator*(const Vector, const Vector) 43
double Tr(const SymTensor) 54

double Tr(const Tensor) 54

double X(void) 22

double XX(void) 2733

double XY(const double) 39

double XY (void) 2734, 38

double XZ(const double) 39

double XZ(void) 2834, 38

double Y(void) 23

double YX(void) 28

double YY(void) 2834

65

double YZ(const double) 39
double YZ(void) 2834, 39
double Z(void) 23

double ZX(void) 28

double ZY(void) 29

double ZZ(void) 2935

I

int fread(AntiTensor&, FILE*) 40

int fread(AntiTensor*, int, FILE*) 40

int fread(SymTensor&, FILE*) 36

int fread(SymTensor*, int, FILE*) 36

int fread(Tensoré&, FILE*) 31

int fread(Tensor*, int, FILE*) 31

int fread(Vector&, FILE*) 24

int freadl(Vector*, int, FILE*) 24

int fwrite(const AntiTensor*, const int, FILE*) 40

int fwrite(const AntiTensor, FILE*) 40

int fwrite(const SymTensor*, const int, FILE*) 36

int fwrite(const SymTensor, FILE*) 36

int fwrite(const Tensor*, const int, FILE*) 31

int fwrite(const Tensor, FILE*) 31

int fwrite(const Vector*, const int, FILE*) 24

int fwrite(const Vector, FILE*) 24

int operator!=(const AntiTensor&, const AntiTensor&) 51
int operator!=(const SymTensor&, const SymTensor&) 51
int operator!=(const Tensor&, const Tensor&) 51

int operator!=(const Vector&, const Vector&) 45

int operator==(const AntiTensor&, const AntiTensor&) 50
int operator==(const SymTensor&, const SymTensor&) 50
int operator==(const Tensor&, const Tensor&) 50

int operator==(const Vector&, const Vector&) 44
istream& operator>>(istream&, Vector&) 45

O
ostream& operator 45

S

SymTensor Deviator(const SymTensor) 56

SymTensor Inverse(const SymTensor) 54

SymTensor operator-(const SymTensor, const SymTensor) 49
SymTensor operator-(void) 41

SymTensor operator*(const double, const SymTensor) 46
SymTensor operator*(const SymTensor, const double) 45
SymTensor operator+(const SymTensor, const SymTensor) 48
SymTensor operator+=(const SymTensor) 49

SymTensor operator/(const SymTensor, const double) 46
SymTensor Sym(const Tensor) 55

SymTensor& operator*=(const double) 46

SymTensor& operator/=(const double) 47

66

SymTensor& operator=(const SymTensor&) 33
SymTensor& operator-=(const SymTensor) 50

SymTensor(const double, const double, ... , const double) 33

SymTensor(const SymTensor&) 33
SymTensor(void) 32

T
Tensor Deviator(const Tensor) 56

Tensor Eigen(const SymTensor, Vector&) 57

Tensor Inverse(const Tensor) 54

Tensor operator%(const Vector, const Vector) 43

Tensor operator-(const AntiTensor, const SymTensor) 50
Tensor operator-(const AntiTensor, const Tensor) 49
Tensor operator-(const SymTensor, const AntiTensor) 50
Tensor operator-(const SymTensor, const Tensor) 49
Tensor operator-(const Tensor, const AntiTensor) 49
Tensor operator-(const Tensor, const SymTensor) 49
Tensor operator-(const Tensor, const Tensor) 49

Tensor operator-(void) 41

Tensor operator*(const AntiTensor, const SymTensor) 48
Tensor operator*(const AntiTensor, const Tensor) 48
Tensor operator*(const double, const Tensor) 46

Tensor operator*(const SymTensor, const AntiTensor) 48
Tensor operator*(const SymTensor, const SymTensor) 48
Tensor operator*(const SymTensor, const Tensor) 48
Tensor operator*(const Tensor, const AntiTensor) 48
Tensor operator*(const Tensor, const double) 45

Tensor operator*(const Tensor, const SymTensor) 48
Tensor operator*(const Tensor, const Tensor) 48

Tensor operator+(const AntiTensor, const SymTensor) 49
Tensor operator+(const AntiTensor, const Tensor) 48
Tensor operator+(const SymTensor, const AntiTensor) 49
Tensor operator+(const SymTensor, const Tensor) 48
Tensor operator+(const Tensor, const AntiTensor) 49
Tensor operator+(const Tensor, const SymTensor) 48
Tensor operator+(const Tensor, const Tensor) 48

Tensor operator/(const Tensor, const double) 46

Tensor operator/=(const double) 47

Tensor Trans(const Tensor) 54

Tensor& operator*=(const double) 46

Tensor& operator+=(const AntiTensor) 49

Tensor& operator+=(const SymTensor) 49

Tensor& operator+=(const Tensor) 49

Tensor& operator-=(const AntiTensor) 50

Tensor& operator=(const AntiTensor) 27

Tensor& operator-=(const SymTensor) 50

Tensor& operator=(const SymTensor) 27

Tensor& operator=(const Tensor&) 26

Tensor& operator-=(const Tensor) 50

Tensor(const AntiTensor) 26

67

Tensor(const double, const double, ..., const double) 25
Tensor(const SymTensor) 26

Tensor(const Tensor&) 26

Tensor(void) 25

V

Vector Cross(const Vector, const Vector) 52

Vector Dual(const Tensor) 52

Vector operator-(const Vector, const Vector) 44
Vector operator-(void) 41

Vector operator*(const AntiTensor, const Vector) 47
Vector operator*(const double, const Vector) 41
Vector operator*(const SymTensor, const Vector) 47
Vector operator*(const Tensor, const Vector) 47
Vector operator*(const Vector, const AntiTensor) 48
Vector operator*(const Vector, const double) 41
Vector operator*(const Vector, const SymTensor) 48
Vector operator*(const Vector, const Tensor) 47
Vector operator+(const Vector, const Vector) 43
Vector operator/(const Vector, const double) 42
Vector& operator*=(const double) 42

Vector& operator+=(const Vector) 44

Vector& operator/=(const double) 42

Vector& operator=(const Vector&) 22

Vector& operator-=(const Vector) 44

Vector(const double, const double, const double) 22
Vector(const Vector&) 22

Vector(void) 21

void XX(const double) 285

void XY(const double) 285

void XZ(const double) 3@5

void YX(const double) 30

void YY(const double) 335

void YZ(const double) 36

void Z(const double) 23

void ZX(const double) 30

void ZY(const double) 31

void ZZ(const double) 3B6

X
X(const double) 23

Y
Y(const double) 23

Z
Z(void) 22

68

	Acknowledgment
	PHYSLIB:

	Contents
	Preface
	Summary
	1. Introduction
	1.1 Vector and Tensor Operations and Notation
	1.1.1 Vectors
	1.1.2 Tensors
	1.1.3 Symmetric and Antisymmetric Tensors
	1.1.4 Vector and Tensor Components; Indicial Notation
	1.1.5 Einstein Summation Convention
	1.1.6 Dimensionality

	1.2 The C++ Programming Language
	1.2.1 Data Abstraction
	1.2.2 Special Member Functions and Dynamic Memory Management
	1.2.3 Function and Operator Overloading

	2. The PHYSLIB Library
	2.1 class Vector
	2.1.1 Private Data Members
	2.1.2 Special Member Functions
	2.1.3 Utility Functions

	2.2 class Tensor
	2.2.1 Private Data Members
	2.2.2 Special Member Functions
	2.2.3 Utility Functions

	2.3 class SymTensor
	2.3.1 Private Data Members
	2.3.2 Special Member Functions
	2.3.3 Utility Functions

	2.4 class AntiTensor
	2.4.1 Private Data Members
	2.4.2 Special Member Functions
	2.4.3 Utility Functions

	2.5 Operator Overload Functions
	2.6 Methods
	2.7 Predefined Constants

	3. Using the PHYSLIB classes
	3.1 Useless Operations
	References
	Index of Operators and Functions

