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The Z Facility
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Performance Milestones Achieved on Z

First shot on Z - October 2, 1996

Pulsed Power
Milestones

required
value

achieved
value

date
achieved

x-ray energy 1.5 MJ 1.8 MJ
2.0 MJ

Nov. 1996
March 1997

x-ray power 150 TW 200 TW
290 TW

Nov. 1996
Jan. 1998

radiation temperature
for weapon physics

100 eV 100 eV
140 eV

April 1997
Oct. 1997

radiation temperature
for capsule compression

150 eV 155 eV March 1998
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Z-Pinch Physics on Z

Why Two-Dimensional,
Massively Parallel, Coupled

Radiation
Magnetohydrodynamics?

• There is a large degree of azimuthal
symmetry in the array that allows 2D
cylindrical simulations.

• Wire merger modeling assumes axial
symmetry that allows 2D Cartesian
modeling.

• 2D simulations are faster and cheaper than
3D simulations.

• Many tools used today are 2D and
predictive with tuned initial perturbations.

• Code comparisons in 2D.

The 240 wire array, 2 cm tall
and 4 cm in diameter, from Z
shot #26 that achieved 1.85 MJ
x-ray energy in a 160 TW, 6.8 ns
fwhm pulse.
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Sandia

Z pinch simulations

• Axisymmetric wire array and liner implosions and radiation production

• Magneto-Raleigh-Taylor simulation and mitigation

• End-on hohlraum simulations

• Static wall hohlraum simulations and capsule implosion

• Dynamic hohlraum simulations and capsule implosion

Power flow simulations

• Disk feed power flow under extremely high currents and magnetic fields
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Magnetohydrodynamics

Magnetoquasistatics neglects  terms from electromechanics.

 (mass) (74)

 (momentum) (75)

 (energy) (76)

 (Faraday) (77)

 (Ampere) (78)

 (divergence), , (Gauss), (79)

, , (80)

Constitutive equations, e.g. :  (Ohm), (81)

κ1, κ2, κ3, κ4, κ5, and κ6 are constants that allow multiple systems of units.

ρ̇ ρ u∇•+ 0=

ρu̇ T
˜

∇• κ1ρ
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E κ2J+ B×+=

ρė T
˜

: u∇ κ1Ĵ Ê•+=
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Ĵ J ρ f u–= Ê E u B×+= Ĥ H u D×–=
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˜
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Summary of Approach

Operator split within ALEGRA framework.

Finite element formalism.

Solve for vector potential and magnetic field component orthogonal
to mesh.

• Az and Bz in cartesian geometry

• Aθ and Bθ in cylindrical geometry

Components solved for depend upon the boundary conditions.

All other magnetic quantities are derived from these.

We must approach the “ideal” MHD limit ( ) as well as the
highly diffusive limit ( ) with a scalable algorithm.

σ ∞→
σ 0→
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2D Cartesian Magnetohydrodynamics

Faraday’s, Ohm’s and Ampere’s laws lead to

(82)

and

(83)

The constants κ2 and κ5 allow for multiple systems of units.
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2D Cartesian Magnetohydrodynamics (cont.)

Compute B components from curl of A

 and (84)

Compute J  from Ampere’s Law

 and (85)

(86)

Compute E from Ohm’s Law

(87)
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2D Cylindrical Magnetohydrodynamics

Faraday’s, Ohm’s and Ampere’s laws lead to

(88)

 where (89)

and

(90)

where

(91)

The constants κ2 and κ5 allow for multiple systems of units.
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2D Cylindrical Magnetohydrodynamics (cont.)

Compute B components from curl of A

 and (92)

Compute J  from Ampere’s Law

 and (93)

(94)

Compute E from Ohm’s Law

(95)
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Finite Element Formulation

Using a weak formulation of the equations, the symmetric,
semi-discrete form of the equations in matrix form become

where
M = “mass” matrix involving conductivity for A, constants for B

K = “diffusion” matrix involving permeability for A and B and
conductivity for B

S = stretch matrix involving velocity gradients
L = boundary integral column matrix for boundary conditions,

(H on the boundary for A, J  on the boundary for B)

Cartesian:

(96)

(97)

M
DA
Dt
-------- KA+ LA=

M
DB
Dt
-------- KB SB+ + LB=

Cylindrical:

(88)

(89)

M
Dψ
Dt
-------- Kψ+ Lψ=

M
Dχ
Dt
-------- Kχ Sχ+ + Lχ=
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Time Integration

The time differencing is devised to support fully implicit, fully
explicit, or hybrid methods.

For A (or ψ)

(98)

For B (or χ)

(99)

with  and

M ∆tθK+[ ]A
n 1+

M ∆t 1 θ–( )K–[ ]A
n ∆tθL

n 1+ ∆t 1 θ–( )Ln
+[ ]+=

M ∆tθK ∆tθsS+ +( )Bn 1+
M ∆t 1 θ–( )K– ∆t 1 θs–( )S+( )Bn

=

∆tθL
n 1+ ∆t 1 θ–( )Ln

+[ ]+

0 θ< 1≤ 0 θs< 1≤
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2D Problems Tested

Magnetic Diffusion

Unperturbed and perturbed liner implosions

Single wire explosion

Multi-wire merger (shows need for Eulerian)

Magneto-RT (shows need for Eulerian)

Simulations with radiation (problems in different treatments of
energy deposition)
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Pegasus Aluminum Liner - Code Comparison
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Pegasus Aluminum Liner - Code Comparison
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Pegasus Aluminum Liner - Code Comparison
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Current and Future Work

Detailed verification efforts to gain confidence and understanding
of both ALEGRA hydro, MHD and radiation.

ALE/Eulerian modeling with instabilities (advection)

More accurate calculation of  from  and  (Use BC info)

Circuit equation coupling

Combined MHD and radiation simulations (synergy)

Periodic boundary conditions to reduce mesh requirements

General production robustness

J A B
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Summary of Approach

Galerkin finite element approach.  Vector potential in 3D.

In 2D, use the vector potential component and/or magnetic
field component orthogonal to mesh (cartesian or cylindrical)

Operator split within the ALEGRA framework

1
µ0
------ A∇× 

 ∇× σ A∂
t∂

------- φ∇ u A∇×( )×–+ 
 + 0=

Joule heating

t
n 1+

t
n

Velocity

JxB forces

∆t
n 1 2⁄+ Lagrangian Step

Remap step for all remeshed nodes
t
n 1+
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Formulations for 3D Magnetics

Several formulations of the magnetics are possible.  We have
been working with the:

“Lorentz” vector potential formulation (preferred).
         (Bryant, Emson and Trowbridge).
“Modified” vector potential formulation (deficient).

Other possible future options of interest to pursue:
A-  vector potential formulations.
Direct magnetic field and/or electric field formulations.
Special formulations to deal with void regions.

We must approach the “ideal” MHD limit ( ) as well as the
highly diffusive limit ( ) with a scalable algorithm.

φ

σ ∞→
σ 0→
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Vector Potential Formulations

 implies

 (Faraday)

In general, , to obtain

An additional “gauge” condition must be imposed in order
to specify the system due to the arbitrary scalar potential.

The Coulomb gauge is  in which case one must
impose conservation of current for an equation for .

Alternatively, we can choose  as a convenient scalar
function of  and .

B∇• 0= B A∇×=

E
t∂

∂A+ 
 ∇× 0=

E φ∇–
t∂

∂A–=

1
µ0
------ A∇× 

 ∇× σ A∂
t∂

------- φ∇ u A∇×( )×–+ 
 + 0=

A∇• 0=
φ

φ
A u
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Formulations with a Specified Scalar Potential

Eulerian Form

Lagrangian form ( )

Can modify electric field definition by arbitrary

1
µ0
------ A∇× 

 ∇× σ A∂
t∂

-------– u A∇×× φ∇–+ 
 =

u A∇×× u A∇( )T• u A∇•–=

1
µ0
------ A∇× 

 ∇× σ DA
Dt
--------– u A∇( )T• φ∇–+ 

 =

φ∇

1
µ0
------ A∇× 

 ∇× σ DA
Dt
--------– u A∇( )T• u A⋅( )∇–+ 

  σ DA
Dt
--------– A u∇( )T•– 

 = =

1
µ0
------ A∇× 

 ∇× σ DA
Dt
--------– A u∇( )T•–

A∇•
µ0σ
----------- 

 ∇+ 
 =
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“Lorentz” Finite Element Formulation

The weak form for the “Lorentz” formulation is

Natural tangential magnetic field boundary conditions.

 gives scalability for small .

More work needed on tangential electric field BCs.

N∇×( ) ν A∇×• Ωd
Ω
∫ σN( )∇• ν A∇•

σ
-----------⋅ Ωd

Ω
∫+

σN
DA
Dt
--------• Ωd

Ω
∫ σN A u∇( )T•( ) Ωd•

Ω
∫+ + N Hb× n• Γd

Γ
∫ ν A∇•( )bN n• Γd

Γ
∫+=

A∇•( )b

A– b n⋅
Lβ

-----------------= σ
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“Modified” Finite Element Formulation

The weak form for the “modified” formulation is

Natural tangential magnetic field boundary conditions.

Should not work well for small conductivities but for
problems with large conductivities everywhere in the mesh
should give the same results as the “Lorentz” formulation.

N∇×( ) ν A∇×• Ωd
Ω
∫

σN
DA
Dt
--------• Ωd

Ω
∫ σN A u∇( )T•( ) Ωd•

Ω
∫+ + N Hb× n• Γd

Γ
∫=
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Time Integration

The discrete transient magnetic equations are

where
 is the magnetic mass matrix
 is the discrete curl-curl operator

 is the contribution from the  or term.
 is the contribution from the natural boundary conditions.

 are time weights for K and S operator, resp.

Fully integrated elements.
Solve using the Aztec parallel iterative solver package.

M ∆tθK ∆tθsS+ +[ ]A
n 1+

=

M ∆t 1 θ–( )K– ∆t 1 θs–( )S+[ ]A
n ∆t 1 θ–( )F

˜ A
n ∆tθF

˜ A
n 1+

+ +

M

K

S u A∇( )T• A u∇( )T•
FA

θ θs,
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Algorithm Overview

•  Lagrangian Step

•  Calculate  using  and   (Explicit)

•  (update current coordinates)

•  Calculate  using  at  coordinates (Implicit)

•  Calculate  and deposit Joule heat

•  Calculate new material state at

•  Eulerian Step (Optional by blocks and ALE triggers)

•  Define new .

•  Flux

•  Recalculate material state and at

•  Calculate new time step based on properties at .

u
n 1 2⁄+ T

˜
n

B
n

J
n, , x

n

x
n 1+

x
n

u
n 1 2⁄+ ∆t

n 1 2⁄+
+=

A
n 1+

u
n 1 2⁄+

x
n

B
n 1+

J
n 1+,

t
n 1+

x
n 1+

A
n 1+

B
n 1+

J
n 1+, t

n 1+

t
n 1+
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Consistent Formulation for Current Density

A consistent approach to calculating the current density, ,
from the vector potential, , is to use the weak form:

If  is known from boundary conditions, then the known
value is applied in the boundary term.  Otherwise the calculated
value of  is used to form the boundary term.

 is calculated from  and and projected back to the
nodes.  Known BCs are applied.

J
A

N∇×( ) ν A∇×• Ωd
Ω
∫ N J• Ωd

Ω
∫– N Hb× n• Γd

Γ
∫=

Hb

Hb ν A∇×=

B A∇×
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Diffusion Test Problem
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Consistent J (dotted) vs. Projected J (solid)

3D MHD shocktube (LAGRANGIAN), 250 elements
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Body Force and Energy Deposition

JxB body force (Laplace force or Lorentz force)

Mixed cell energy deposition is treated using volume
fraction average conductivity. (Void has a finite conductivity)

The energy deposited is given by

with .  Work needed on time centering.

FM
n

J
n

B
n×=

σ φmσm∑=

em
n 1+

em
n

–
σm

σ
-------Q̇

∆t
n 1 2⁄+

ρm
---------------------=
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Time Step Control

The time step is determined using the standard ALEGRA
time step scheme with the wavespeed  given by the
mechanical wavespeed plus a term to give the fast Alfven wave
speed.

We tend to compute with pure void rather than using a low
density gas in void regions.
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SMALE
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294400 Element Eulerian Calculation

by-27ns by-30ns

velx-33ns by-33ns
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Why Periodic Boundary Conditions in ALEGRA?

Useful for test problems. In particular, one-dimensional test
problems have transverse components.

Natural for meso-scale modeling.
Reduce mesh requirements and run times for 2D and 3D.
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Periodic Boundary Conditions - User interface

PERIODIC BC, {ns1}, TRANSLATE { }, {ns2}

PERIODIC BC, {ns1}, ROTATE { } ABOUT { } {ns2}
PERIODIC BC, {ns1}, ROTATE { } ABOUT { } AXIS { }, {ns2}
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Periodic Boundary Conditions - Status

Approach:  Use the “ghost element” technology inherent in
ALEGRA for parallel computing as a means of implementing
periodic boundary conditions.  In principle, all physics will
come up and work in parallel with minimal intrusion.

Parallel nodeset “matching” scheme implemented.

The PMeshIPC class has been derived from the MeshIPC
class for special periodic boundary communications.

An initial parallel framework exists but work is still in
progress.
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Challenges

Run times for large calculations will be a problem. The
Courant limit and iterative solver scaling will work against us.
Will need multi-level solution technology.

Advection of A can lead to anomalous currents.  We will
want to improve numerics.

ALEGRA ALE capability should permit optimal, robust,
automatic mesh smoothing. Mesh smoothing and optimization
for accuracy and robustness must be smarter.

Improved formulations of magnetic force and joule heating
may be required.

Continuous improvement through V and V activities.


