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Summary

The results presented here constitute a brief summary of an on-going multi-year e�ort to in-
vestigate hierarchical/wavelet bases for solving PDE's and establish a rigorous foundation for these
methods. A new, hierarchical, wavelet-Galerkin solution strategy based upon the Donovan-Geronimo-
Hardin-Massopust (DGHM) compactly-supported multi-wavelet is presented for elliptic partial di�er-
ential equations. This multi-scale wavelet-Galerkin method uses a wavelet transform to yield nearly
mesh independent condition numbers for elliptic problems as opposed to the multi-scaling functions
that yield condition numbers which increase as the square of the mesh size. In addition, the results
of von Neumann analyses for the DGHM multi-wavelet element and the Reproducing Kernel Particle
Method (RKPM) are presented for model hyperbolic partial di�erential equations. RKPM exhibits
excellent dispersion characteristics using a consistent mass matrix with the proper choice of re�nement
parameter and mass matrix formulation. In comparison, the wavelet-Galerkin formulation using the
DGHM element delivers a frequency response comparable to a Bubnov-Galerkin formulation with a
quadratic element.

Introduction

Wavelet bases promise the capability to compute multi-scale solutions to partial di�erential
equations with potentially higher convergence rates than conventional �nite di�erence and �nite element
methods, and their built-in adaptive nature o�ers the possibility of \automatic" adaptivity. Similarly,
the Reproducing Kernel Particle Method (RKPM) has many attractive properties that make it ideal for
treating a broad class of physical problems. For example, RKPM may be implemented in a \mesh-full"
or a \mesh-free" manner and provides the ability to selectively tune the method, via the selection of the
re�nement parameter and window function, in order to achieve the requisite numerical performance.
RKPM also provides a framework for performing hierarchical computations making it an ideal candidate
for simulating multi-scale problems. Despite the promise of wavelet bases and RKPM, the application of
new numerical methods to physical problems involving wave propagation, advection and di�usion raises
many questions about the overall numerical performance, computational complexity, and parallelism of
these solution techniques.

Over the past year, �ve hierarchical/wavelet formulations have been investigated in order to eval-
uate their numerical performance in terms of convergence rate, dispersive behavior, and computational
complexity. The solution methods considered include the wavelet-Galerkin [1], wavelet{collocation [5],
and reproducing kernel [4] methods. Particular emphasis has been placed on solution methods that use
bases with compact support, reproduce f1; x; y; xy; :::g in a consistent manner, accommodate a variety
of boundary conditions, exhibit good dispersion characteristics, and provide a framework for hierarchi-
cal computations. Based upon the preliminary scoping e�orts, the wavelet-Galerkin and reproducing
kernel methods were selected for detailed study because these methods may be used as discrete frame-
works with a variety of bases and have demonstrated application to realistic physical problems. In this
summary, attention is focused on the dispersive nature of RKPM using cubic-spline window functions,
and on the DGHM multi-wavelet element[2].



Formulation

This section presents a brief overview of the RKPM formulation, the DGHM multi-wavelet
element, and a hierarchical solution algorithm based on the DGHM multi-wavelet. A detailed presen-
tation of RKPM is beyond the scope of this work, and the reader is directed to the literature for details
concerning the method [3,4].

The RKPM formulation begins with the de�nition of a kernel approximation to a function, u,

uR(x) =
Z +1

�1

u(�)'(x� �)d�; (1)

where ' is a kernel function and uR is the continuous approximation to u. In order to address a �nite
domain and discrete problems, numerical quadrature (e.g., trapezoidal integration) is used to evaluate
Eq. (1) with a modi�ed window function, '. The discrete kernel approximation is, in one-dimension,

uh(x) =
NnpX
i=1

'(x� xi)u(xi)�xi; (2)

where uh is the discrete approximation to the function, u, and Nnp is the total number of nodes.
The modi�ed, one-dimensional, window functions used in Eq. (2) are constructed with correction

functions, �k(x), that vary within the domain, 
 [4]. The correction functions are designed so that the
resulting discrete kernel approximation will consistently reproduce polynomials to the desired degree
of approximation, i.e., consistently reproduce f1; x; x2; :::g. In two-dimensions, the window functions
are obtained from a tensor product of the one-dimensional window functions with correction functions
�k(x; y). From the modi�ed window functions, shape functions in a �nite element sense, may be obtained
by considering Eq. (2) to be an expansion in terms of shape functions, i.e., Ni(x) = '(x� xi)�xi.

In this work, a cubic spline is used as the window function, ', with an optimal re�nement
parameter, r = 1:14, as established by Liu and Chen [3]. This re�nement parameter is designed to
minimize aliasing error in terms of an energy error. Note that if a linear \hat" function is used for the
window function with r = 1, then the usual linear �nite element shape functions are obtained.

With the RKPM formulation de�ned, attention is turned to the DGHM multi-wavelet element.
Figure 1 shows the DGHM scaling and wavelet functions at the element level. Before proceeding with a
description of the multi-scale Galerkin solution algorithm for elliptic partial di�erential equations, the
mathematical framework is outlined. The problem under consideration is the solution to ��r2u+u = f
with � � 0 and prescribed essential boundary conditions on �. In this context, let V � H be a subspace
of a Hilbert space H, Vh be a �nite dimensional subspace of V , a(u; v) =

R

 u

0v0 + uv be a bounded
symmetric coercive bilinear form on V, and let V 0 (�= V) denote the dual of V.
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Figure 1: Donovan-Geronimo-Hardin-Massopust (DGHM) multi-wavelet element showing (a) the
DGHM \shape" functions (�), and (b) the element view of the multi-wavelet components ( ).
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In a Galerkin setting, given f 2 V 0, the problem becomes one of �nding uh 2 Vh such that
a(uh; v) = (f; v), 8v 2 Vh, where, (�; �) =

R

(�; �). Throughout this section, a basis will be arranged

as a column vector. Then uh can be computed in terms of the scaling functions, �, as uh = cT�. The
coe�cients, c, can be found by solving the linear system

K̂�c = F (�); (3)

where K̂� = a(�;�) is an Nnp � Nnp matrix, i.e., the generalized sti�ness, and F (�) = (f;�) is the
column vector (F (�1); : : : ; F (�N))T . For large Nnp, e.g., in three-dimensions, direct solution methods
demand both large memory and cpu resources limiting the size of the linear system that may be solved.
However, if the matrix, K̂�, can be preconditioned in an e�ective way, then the linear system can be
e�ciently solved using simple iterative techniques.

As an alternative to attempting to solve K̂�c = F by brute force, the wavelet basis 	, for Vh
is used to obtain a well-conditioned linear system. Given that 	 is a multi-scale wavelet basis for Vh,
a multi-scale transform, W , may be constructed such that 	 = W T�. The multi-scale transform is
a nonsingular Nnp � Nnp matrix, and the transform, 	 = W T� can be implemented in an O(Nnp)
algorithm. Thus, in terms of the multi-wavelets, uh = dT	 may also be found by solving

K̂	d = F (	): (4)

Here, K̂	 = a(	;	) = W T K̂�W: Thus the linear system, Eq.(4), resulting from Eq.(3) via a change
of basis can also be obtained by left and right preconditioning of K̂� with W . The solution of Eq.
(3) using the multi-scale transformation W involves the following algorithm: 1) Approximate F�, 2)
Calculate F	 =W TF�, 3) Solve W T K̂�Wd = F	, and 4) Evaluate c = Wd: One important aspect of
this algorithm is that it does not require the use of the wavelet decomposition matrix, W�1.

With the RKPM and DGHM formulations outlined, attention is turned to the dispersion analysis.
The application of discrete solution methods to wave propagation problems can yield results that are
dispersive even when the physical problem is not dispersive. For this discussion, the two model problems
under consideration are the �rst and second-order wave equations in Cartesian coordinates. The semi-
discrete forms of the �rst and second-order wave equations are,

M _U +AU = 0; and M�U +KU = 0; (5)

where A is the advection operator, andK is the sti�ness matrix. The generalized mass matrix is de�ned
as M = �Mc + (1 � �)Ml, where Mc and Ml are the consistent and row-sum-lumped mass matrices
respectively, and 0 � � � 1. Details on the RKPM dispersion analysis may be found in [6].

In a Galerkin �nite element setting, element level mass and sti�ness operators for the one-
dimensional DGHM element may be de�ned in terms of the scaling functions, �. The mass, M e, and
sti�ness operator Ke associated with the second order wave equation are

M e =
l

6

2
64
1

4
1

3
75 ; Ke =

c2

21l

2
64

85 �128 43
256 �128

sym: 85

3
75 ; (6)

where c is the sonic velocity, l = 2�x is the element diameter, �x is the node spacing, and a partition
of unity scaling has been applied to the multi-wavelet scaling functions. Surprisingly, the element level
mass matrix is identical to the row-sum lumped mass matrix for the quadratic �nite element and is
diagonal because the DGHM multi-wavelet scaling functions are orthogonal. Thus, the consistent mass
for the DGHM element is diagonal. Because the multi-scale solution may be expressed in terms of the
scaling functions alone, even when a multi-scale solution algorithm is used, this form of the mass and
sti�ness operator are su�cient to perform a von Neumann analysis.
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Figure 2: Non-dimensional circular frequency for the quadratic �nite element and the DGHM multi-
wavelet element.

Results

In order to evaluate the DGHM multi-wavelet element and the multi-scale transform algorithm the
condition number associated with the generalized sti�ness matrix was computed for both the multi-
scaling functions and the multi-wavelets. The model problem considered is ��u00 + u = f with � � 0,
and u(0) = u(L) = 0. In the weak form, this problem becomes M�U +K�U = F .

Table 1 shows the condition numbers for both K̂� = [M� + K�] and K̂	 = [M	 + K	] after
diagonal scaling for 0 � � � 1. Here, k indicates the scale with increasing k corresponding to increasing
mesh resolution, i.e., �x = 2�(k+1). As shown by the results, increasing the mesh resolution by a factor
of 256 results in condition numbers that grow by 5 orders of magnitude for K̂�, while the condition
numbers for K̂	 increase by only a factor of 10.

� 0 1 10 100 10000 1

k K̂� K̂	 K̂� K̂	 K̂� K̂	 K̂� K̂	 K̂� K̂	 K̂� K̂	

0 1 1 15 4 19 4 20 4 20 4 20 4
1 1 1 78 12 104 13 108 13 109 13 109 13
2 1 1 334 17 453 19 469 19 471 19 471 19
3 1 1 1355 24 1846 26 1915 26 1922 26 1923 26
4 1 1 5441 29 7418 31 7695 31 7727 31 7727 31
5 1 1 21785 33 29708 36 30818 36 30945 36 30947 36
6 1 1 87160 40 118866 40 123310 40 123819 40 123824 40
7 1 1 348662 44 475500 43 493276 43 495311 43 495332 43
8 1 1 1394668 47 1902035 46 1973143 46 1981282 46 1981365 46

Table 1: Condition numbers for the diagonally scaled K̂� and K̂	 operators for multiple mesh scales,
0 � k � 8, and 0 � � � 1.

The non-dimensional frequency, !�x=c, for the DGHM wavelet element is shown in Figure 2
with the frequency spectra for the quadratic �nite element. The frequency response for each element
admits two solutions, the so-called optical and acoustical branches. The gap between the branches of
the frequency response is often referred to as a \stopping" band. The similarities between the spectra
for the DGHM and quadratic elements suggests that the dispersive nature of the DGHM element will
be similar to the behavior of the quadratic element, albeit with the inferior lumped mass matrix.
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Figure 3: Non-dimensional phase (a) and group speed (b) for the one-dimensional, �rst-order wave
equation. (CF: consistent mass, HF: higher-order mass, LF: lumped mass, CT: consistent mass -
trapezoidal integration)

Attention is now turned to the results of a von Neumann analysis of the RKPM formulation for
the �rst and second-order wave equation. The non-dimensional phase (�) and group (�) speed for the
semi-discrete, one-dimensional �rst-order and second-order wave equations are presented as functions of
non-dimensional wave number, k�x=� = 2�x=�, in Figures 3 and 4. For the �rst-order wave equation,
the non-dimensional phase speed refers to the ratio between the discrete and continuum advective
velocity, i.e., � = �c=c where �c is the discrete advective velocity. For the second-order wave equation, c
is the sonic velocity. The non-dimensional group speed is de�ned as � = vg=c, where vg = @!=@k, ! is
the circular frequency, and k is the wave number. The results in Figures 3 and 4 are plotted for fully
integrated, consistent (CF: � = 1), lumped (LF: � = 0), and higher-order (HF: � = 1=2) mass matrix
formulations along with with the consistent mass { trapezoidal integration (CT) formulation that uses
nodes as quadrature points, eliminating the need for a background integration mesh.

For the �rst-order wave equation, the RKPM formulation introduces lagging phase errors over
the discrete spectrum of wavelengths as shown in Figure 3. The consistent mass (CF) formulation
performs the best and delivers signi�cantly better phase and group speed relative to the lumped (LF)
and \higher-order" (HF) mass matrix formulations. The consistent mass { trapezoidal integration (CT)
formulation appears to o�er a good trade-o� between dispersive behavior and reduced computational
cost.

Figure 4 shows the phase (a) and group (b) speed for the one-dimensional, second-order wave
equation for the RKPM semi-discretization using the CF, CT, LF and HF formulations. Surprisingly,
the trapezoidal mass formulation yields zero phase speed for 2�x wavelengths, i.e., these wavelengths
are stationary on the grid. Additionally, the CT formulation results in large, lagging group errors
for wavelengths shorter than 3�x. In Figure 4(c), the fully integrated \bi-linear" RKPM formulation
with a consistent mass matrix shows almost negligible phase errors with respect to the propagation
direction, �. Thus, the RKPM formulation yields nearly perfectly isotropic phase speed, i.e., there are
no preferential propagation directions in two dimensions.

Conclusions

The DGHM multi-wavelet element in conjunction with the multi-scale wavelet transform is a promis-
ing new technology that o�ers the possibility of obtaining high-resolution results with nearly mesh-
independent condition numbers for elliptic problems. The dispersive character of this new element is
comparable to the quadratic �nite element.

The results of the von Neumann analyses indicate that, for the formulations considered, the
consistent mass RKPM formulations exhibit very good dispersion properties, e.g., phase errors less than
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Figure 4: Phase (a) and group (b) speed for the one-dimensional, second-order wave equation, and phase
speed (c) for a two-dimensional discretization with full integration and consistent mass. (CF: consistent
mass, HF: higher-order mass, LF: lumped mass, CT: consistent mass - trapezoidal integration)

5% are obtained with only 3�4 nodes per wavelength. In addition, wave propagation with the consistent
mass RKPM formulation in two-dimensions is nearly isotropic in terms of angular dependence of the
phase speed and in terms of the amplitude of the phase errors. While the consistent mass matrix RKPM
formulations perform quite well, the lumped and higher order mass formulations introduce severely
lagging phase and group speeds. Finally, the consistent mass RKPM results indicate that minimal
losses in phase and group speed error result when trapezoidal rather than full (Gauss) quadrature is
used. The use of point-wise integration may signi�cantly reduce computational cost by reducing the
number of quadrature points needed, however, further testing with trapezoidal integration is required.
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