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1.  Introduction

Large computational physics codes are increasing in complexity
as customers demand improved physics packages and more flexi-
ble algorithms and problem specifications. It is not uncommon
for a code to exceed one hundred thousand lines of FORTRAN,
and some codes are much larger. This poses a considerable chal-
lenge for program management.

The Computational Physics Research and Development Division
at Sandia National Laboratories is aggressively pursuing C++ as
the language of choice for new coding efforts. We feel that we
cannot meet the stringent customer requirements and delivery
schedules we now face with either FORTRAN77 or Fortran-90.

1.1  General Advantages and Disadvantages of C++

The advantages of C++ are:

Strong type checking.All variables and procedures are declared
prior to their first use. The argument lists of procedures must
match in separate compilation units. These strong type checking
features eliminate entire classes of program bugs common in
FORTRAN programs.

Superior language syntax.C++ is a superset of ANSI C and
shares its inherently block-structured syntax. The language is free
format in the sense that few assumptions are made about white
space. Thus, no artificial constraints on line length and continua-
tion are imposed.

Object-oriented programming support.The definitive feature of
C++ is theclass , which is an extension of thestruct feature
of C. A class consists of a set of data members and an enumer-
ation of functions that have access to those data members. It thus
enforces the concept of data encapsulation. Furthermore, it is
possible to invoke the functions associated with a class object
without knowing the exact type of the object; this supports poly-
morphism.

Superior dynamic memory management.C++ provides strong,
flexible support for the management of the free memory sto
This is vital for codes operating on large and flexible database

Operator and function overloading.C++ permits the meaning of
the standard operators to be redefined when applied to class
jects. This permits unusually transparent programming syn
which is tailor-made for particular applications.

Availability. C++ is available or is relatively easy to port to an
platform that supports C.

The disadvantages of C++ are:

Lack of an ANSI language standard.The language is very young
and is still evolving. It will be some time before the ANSI stan
dard is completed. Fortunately, the AT&T CFRONT translator
a de factostandard that is largely followed by other implementa
tions.

Poor optimization.C++ code can be very inefficient. Many of the
known efficiency issues can be addressed by careful coding. O
ers will be resolved only by the development of more sophistic
ed compilers. We believe that C++ can ultimately becom
competitive with FORTRAN from an efficiency standpoint on a
computer architectures.

1.2  The Rising Popularity of C++

C++ is growing in popularity as a scientific programming lan
guage. At Sandia National Laboratories, the next generat
shock wave physics code, RHALE++1 and fluid dynamics code,
ZEPHYR++2 are being developed in C++. In addition, PCTH3,
the parallel version of the 3-D Eulerian shock wave physics co
CTH, is being written in C++ and will run on SIMD and MIMD
architectures. Moreover, Sandia development groups are us
the third party product ACIS4 which is written in C++, to provide
solid modeling capabilities for their finite element codes.
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In addition to Sandia, C++ scientific programming activities exist
at Northrup Corporation5, University of New Mexico6, Universi-
ty of Colorado7, and Los Alamos8.

2.  C++: A Language for Mathematical Physics

C++ can be regarded as a meta-language whose dialects are por-
table from one platform to another. Therefore, one can tailor a
particular dialect to the expression of concepts in mathematical
physics. Through this approach, one is capable of writing code
that resembles the original equations. In other words, it is possi-
ble to write code that “reads like a book.” For example, given the
equation

(EQ 1)

the corresponding C++ coding is written as

f = Div(T) + b;

where f and b are instances of a vector field class and T is an in-
stance of a tensor field class. It should be noted that the language
does not implicitly provide the means for adding vectors but rath-
er gives a programmer all the tools necessary to define how the
mathematics should be performed.

This example points out the difference between a “user” pro-
grammer and a “library” programmer. A user programmer would
program the physics as demonstrated above with Equation 1. It is
the library programmer’s responsibility to develop vector and
tensor classes that encapsulate the data and functions necessary
to describe the mathematics. For example, a vector class could be
defined with data and member functions as

class Vector{
double x, y, z;

public
Vector();
Vector(double x, double y, double z);
~Vector;
Vector& operator=();
Vector operator+(Vector&);

};

The coding for the overloaded addition operator could be written
as

Vector Vector::operator+(Vector& b)
{

Vector c;
c.x = x + b.x
c.y = y + b.y
c.z = z + b.z
return c;

}

Hiding the actual operations in this fashion not only provides
simple interface for user code but also isolates many coding
rors and architecture dependencies.

Programs that model physics typically require many types
fields: scalar, vector, and tensor fields. For example, a finite e
ment code modeling continuum mechanics would require sca
vector, and tensor fields to describe pressure, displacement,
stress for each element. By developing rich class libraries
these fields that reflect consistent mathematical definitions, a u
programmer can simply develop his program by typing in equ
tions. Through the strong type checking feature of the langua
any inconsistences in the expressions will be flagged by the co
piler. In addition, these field classes hide the bookkeeping and
dices from the user programmer, thus eliminating an entire cl
of bugs.

In order to illustrate the power of the C++ language, consider t
divergence of the stress term in Equation 1. The physicist w
wants to model this phenomena is most interested in the inter
force field and is least interested in the topology of the proble
If the physicist is given symmetric tensor fields defined for pre
sure points (element centers) and vector fields defined at
placement points (element vertices), he can find the internal fo
field by rotating the stress to the current configuration and findi
its divergence. This is given as

VectorField BlockSpec::InternalForce()
{

// Rotate stress to current configuration

  SymTensorField Rotated_Stress =
Sym(Rotation * Stress *

Trans(Rotation));

// Calculate and return the internal forces

  VectorField InForce = Div(Rotated_Stress,
 CurCoor);

  return InForce;
}

This sort of code is easy for a physicist to understand and to m
ify. The library classes themselves are “black boxes” so far as
physicist is concerned; he very rarely will need to know anythin
about their internal workings. Note, that the above example do
not provide any information about the dimensionality or topolog
of problem; it simply replicates a portion of Equation 1. O
course, the language cannot prevent bugs introduced by incor
equations. In the example above, it would be syntactically corr
to find the divergence of the unrotated stress and thus always
culate the initial internal force instead of the current intern
force.

f T∇• b+=
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3.  C++ Efficiency Issues

Programming in terms of objects is not without its drawbacks.
C++ implementations are notorious for inefficiencies in memory
and execution speed. This is particularly true for scientific pro-
gramming since overloading operators will be desired. In these
types of member functions, C++ is a “memory hog.” For exam-
ple, consider a matrix class with overloaded + and * operators
and the following expression:

Matrix B(rows, cols);
Matrix C(rows, cols);
Matrix D(rows, cols);
Matrix A;

A = B + C * D

where A, B, and C are matrices. Using overloaded operators, this
expression will result in the following set of calls to evaluate the
expression

Matrix Matrix::operator*(Matrix& )
Matrix::Matrix(int& rows, int& cols)
Matrix::Matrix(Matrix &)
Matrix::~Matrix()Matrix

Matrix::operator+(Matrix& )
Matrix::Matrix(int& rows, int& cols)
Matrix::Matrix(Matrix &)
Matrix::~Matrix()

Matrix& Matrix::operator=(Matrix&)
Matrix::~Matrix()

which in pseudo code is

operator *
1) create temp_1 of size rows by cols [4]
2) temp_1 = C * D [4]
3) temp_2 = temp_1 [5]
4) delete temp_1 [4]

operator +
5) create temp_3 of size rows by cols [5]
6) temp_3 = B + temp_2 [5]
7) temp_4 = temp_3 [6]
8) delete temp_3 [5]

operator =
9) create A of size rows by cols [6]
10) A = temp_4 [6]
11) delete temp_2 [5]
12) delete temp_4. [4]

where the number in brackets is the number of allocated matrices
at the corresponding step. Without user optimization, steps 3, 7
and 10 require a loop over the total length of the matrix where
each element of a matrix is assigned the value of another matrix

element. This is a tremendous number of unnecessary assignm
operations. In addition, while the user only requested four ma
ces, at steps 7, 9, and 10 there are six matrices allocated. In
eral, every overloaded operator on the right hand side of
expression requires a temporary. For large memory objects,
creation of temporaries could severely limit the complexity of e
pressions. Later it will be shown that allocating memory can
very expensive in terms of CPU cycles and therefore, the creat
of temporaries should be avoided.

We have implemented two methods to control the creation
temporaries: reference counting and container classes.

3.1  Reference Counting

Reference counting basically eliminates the creation of objects
copy constructors and overloaded = operator. Reference coun
can be implemented in a class by adding an integer pointer to
private data of a class. With reference counting, the pseudo c
for the matrix class example becomes

operator *
1) create temp_1 of size rows by cols [4]

allocate temp_1.rc; set to zero
2) temp_1 = C * D [4]
3) &temp_2 = &temp_1; *temp_1.rc++ [4]
4) *temp_1.rc-- [4]

operator +
5) create temp_3 of size rows by cols [5]

allocate temp_1.rc; set to zero
6) temp_3 = B + temp_2 [5]
7) &temp_4 = &temp_3; *temp_3.rc++ [5]
8) temp_3.rc--; [5]

operator =
9) &A = &temp_4 (= &temp_3) [5]

*temp_4.rc++ (= *temp_3.rc)
10) delete temp_2 [4]
11) *temp_4.rc-- (= *temp_3.rc = A.rc)  [4]

where rc is the integer pointer added to the matrix class. As o
can see in this example, reference counting eliminated the unn
essary assignment operations but only eliminated one tempor
Reference counting will only eliminate one temporary per e
pression and thus it would be more memory efficient to progra
the matrix expression as

A = C * D;
A += B;

which leads to the pseudo code

operator *
1) create temp_1 of size rows by cols [4]

allocate temp_1.rc; set to zero
2) temp_1 = C * D [4]
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3) &temp_2 = &temp_1; *temp_1.rc++ [4]
4) *temp_1.rc-- [4]

operator =
5) &A = &temp_2 [4]

*temp_2.rc++ (= *temp_1.rc = A.rc)
6) *temp_2.rc-- (= *temp_1.rc = A.rc) [4]

operator +=
7) A += B.  [4]

The programming style shown above eliminates temporaries and
unnecessary assignment operations.

In order to test the efficiency of C++ with reference counting, a
matrix test case was constructed that basically performs a series
of matrix operations. This test case does not resemble any known
algorithm. Equivalent coding was developed in FORTRAN. A set
of matrices with rank 95 were used and the results from the two
codes are given in Tables 1 and 2 for different compiler options
on a SUN SparcStation II and a single processor on a CRAY Y-
MP.

Table 1 shows a vectorization gain of 6.6 for the C++ coding exe-
cuted on the CRAY (-h vector0 versus -h ivdep). However, when
one compares the SUN execution speed to the CRAY, it is evident
that the C++ coding is not even approaching the peak speeds of
the CRAY Y-MP. In addition, the performance of C++ is even
more disturbing when one compares the execution speeds of
FORTRAN to C++ for both architectures. As shown in Table 2,
the FORTRAN code actually ran almost five times faster than the

equivalent C++ coding on the CRAY (C++ is more than 30 time
slower, if C++ default compulation is compared to FORTRA

default compulation). Further investigation revealed that the d
crepancy in these numbers could be partly explained in two o
servations: (1) chaining of functional units cannot be obtain
with the C coding generated by AT&T CFRONT and, (2) a tre
mendous number of cycles are lost in allocating memory fro
the heap: a requirement in overloaded operator functions. La
other observations determined that the parts of C++ coding t
did vectorize, only vectorized for a maximum loop size of 6
The compilier option -h restrict=f informs the compiler tha
pointer arguments passed through the function call are not alia
elsewhere. With a matrix class, the pointer argument is an
stance of a matrix object and not a pointer to the data. It would
very beneficial if C++ would allow the keyword “restrict” (an ex
tension to ANSI C provided by CRAY to promote full vectoriza
tion of loop constructs in C coding). This limitation can b
bypassed if C functions are called to perform the actual mat
operations. Results from this enhancement are given in the n
section.

Currently, we do not know of a method in the current C++ la
guage definition to obtain chaining when overloaded operat
are used. For chaining to work with these types of functions, t
CRAY C compiler would not only have to combine loops but als
eliminate the memory allocation and deallocation calls that a
pear between the loops for temporary object creation and dest
tion. Reference counting helps these operations to be mem
efficient but it does not eliminate many of operations that occ
between the loops. If C++ allowed for overloading ternary oper
tors, chaining could be achieved.

3.2  Container Classes

In the previous section it was argued that part of the inefficienc
in C++ lie with allocating and deallocating memory for the da
segment of temporary objects. One method of eliminating the
inefficiencies is to develop a class that manages its own da
Classes that manage themselves are called container classes
general rule of container classes is to never deallocate mem
that has been allocated. For example, in a series of operatio
temporary objects are created and deleted. Most of the ineffici
cy in this process results from user specified data segment allo
tion and deallocation (we are not concerned with the allocati

Table 1: C++ Matrix Class Test 95 x 95

Vendor Options
User
Time

Ratio
CPU / Peak CRAY

CPU

SUN (default) 6.0 26.5

SUN -O4 3.4 14.8

CRAY (default) 1.53 6.7

CRAY -O1 1.52 6.6

CRAY -O2 1.42 6.2

CRAY -h vector0 1.52 6.6

CRAY -h restrict=f 1.39 6.0

CRAY -h restrict, bl 1.26 5.5

CRAY -h ivdep 0.24 1.0

CRAY -h ivdep, bl 0.23 1.0

Table 2: Equivalent FORTRAN Test 95 x 95

Vendor Options User Time
User Time

Ratio F/C++
(C++/F)

SUN -O4 0.9 0.26 (3.8)

CRAY 0.049 0.21 (4.8)
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and deallocation of an instance of an object). Within a container
class, when memory is needed for the data segment of the class,
the class first looks at its “free store” to see if memory is already
allocated. If not, the new object allocates memory from the heap.
When an object is deleted, its data segment is returned to the
“free store” for the class. At some point in the execution of the
program, the maximum amount of memory required for the prob-
lem is reached and the container class will cease to request mem-
ory from the heap.

In order to test the effects of the container class concept on the ef-
ficiency of C++, a very simple test case was developed and is
shown below.

Matrix a(len);
Matrix b(len);
Matrix c;
for(register i=0;i < max_iterations; i++) {

c = a + b;
}

This test case was programmed in FORTRAN, C, and C++. The
test case was intentionally kept simple to determine if C++ could
be made as efficient as FORTRAN. Since C++ is translated to C
by AT&T CFRONT before it is compiled, equivalent C coding
was developed to determine the optimization that could be
achieved with the CRAY C compiler on the mangled code that
AT&T CFRONT produces. In addition, many variations of loop
constructs were tested in the three languages. The megaflop
(Mflops) performances of the three different codes on the CRAY
are given in Table 3. Each code was compiled with the most ag-
gressive compiler optimizations available.

Table 3 shows that this particular C++ coding performed we
against FORTRAN and C coding under the conditions that o
develops classes that use reference counting, perform their
memory management and take advantage of optimizations p
vided by the vendor. Note that by developing code in C++, wh
an optimization is made in a class function, the optimization
realized in every portion of the code that uses the member fu
tion. In other words, the user code does not have to be modifi
In a FORTRAN code, the optimization would have to be replica
ed in every location that the operation is performed.

3.3  Suggestions for Compiler Improvements

Consider again the expression analyzed earlier:

A = B + C * D;

This expression can be optimized by operator substitution.
good optimizing compiler could replace the original parse tree

with the parse tree

The obvious advantage is that no temporaries are used. A less
vious but equally important advantage is that no constructors
destructors are called between operations. Because no cons
tor/destructor calls separate the operations, a compiler that
inline loops can also chain the operations together. This impl
performance near the theoretical maximum.

Table 3: Matrix Test a = b + c (rank = 100, 10,000 iterations)

Code Mflops Remarks

Fortran 58.3 Two loops, outer index - inner loop

Fortran 102.21 Two loops, inner index - inner loop

Fortran 143.9 Single loop

C 92.9 Single loop

C 135.2 Declare argument pointers as restrict

C++ 38.3 No memory management - Only refer-
ence counting.

C++ 90.3 Use a.Add(b,c) function - no temporar-
ies are required.

C++ 84.1 Memory management and reference
counting

C++ 121.5 Memory management, reference count-
ing and call to a C function with argu-
ment pointers declared as restrict

C D

*
tmp1 B

+
tmp2A

=

A C

= D

*= B

+=
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However, a number of assumptions are made when transforming
the parse tree in this manner. These assumptions are:

1) The operationsA=A*D andA*=D are equivalent.
2) The operationsA=A+B andA+=B are equivalent.
3) The+ operator commutes.

Note that these assumptions are true of both real numbers and of
the Matrix class we described earlier. However, while a C++
compiler is allowed to make these assumptions about real num-
bers, no construct in the C++ language permits the compiler to
make such assumptions about a user-defined class. An extremely
intelligent compiler might be able to decide whether such as-
sumptions are safe from the definition of the class and its inline
operators; but such compilers are years away if they can be writ-
ten at all. We feel that it would be advantageous to invent new
C++ language constructs to inform compilers of which such com-
mon assumptions apply to the operators of a given class. For the
present, such constructs might take the form of new#pragma
directives.

4.  Conclusion

In the above discussion, it has been shown that C++ can perform
efficiently as a scientific programing language. In order for C++
to be efficient, C++ library programmers will have to be aware of
the cost of creating temporaries and utilize any vendor specific
optimizations that may exist. By using C++ as the programming
language, a code project can have asingle user code that links
with specialized libraries which seek to achieve the peak perfor-
mance of a particular vendor’s architecture. Lastly, we believe
that with the features of C++, scientific programs can be devel-
oped in less time with fewer defects than with any other lan-
guage.
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