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The goals and time constraints of developing the next generation shock c
RHALE++, for the Computational Dynamics and Adaptive Structures Departm
at Sandia National Laboratories have forced the development team to clo
examine their program development environment. After a thorough investiga
of possible programming languages, the development team has switched fr
FORTRAN programming environment to C++. This decision is based on the fl
bility, strong type checking, and object-oriented features of the C++ programm
language.

RHALE++ is a three dimensional, multi-material, arbitrary Lagrangian Euler
hydrocode. Currently, RHALE++ is being developed for von Neumann, vec
and MIMD/SIMD computer architectures. Using the object oriented features
C++ facilitates development on these different computer architectures since a
tecture dependences, such as inter processor communication, can be hidden
classes. However, the object oriented features of the language can create s
cant losses in efficiency and memory utilization. Techniques, such as refer
counting, have been developed to address efficiency problems that are inher
the language. Presently, there has been very little efficiency loss realized on
scalar and nCUBE massively parallel computers; however, although some ve
ization has been accomplished on CRAY systems, significant efficiency losse
ist. This paper presents the current status of using C++ as the develop
language for RHALE++ and the efficiency that has been realized on SUN, CR
and nCUBE systems.

Introduction

Large computational physics codes are increasing in complexity as customer
1Senior Member of Technical Staff, Computational Physics Research and Devel-
opment Division, Sandia National Laboratories, Albuquerque, New Mexico,
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mand improved physics packages and more flexible algorithms and problem s
fications. It is not uncommon for a code to exceed one hundred thousand lin
FORTRAN, and some codes are much larger. This poses a considerable cha
for program management.

C++ is growing in popularity as a scientific programming language. At Sandia
tional Laboratories, the next generation shock wave physics code, RHAL
(Peery, Budge, Robinson, and Witney, 1991) is being developed in C++. In a
tion, PCTH (Robinson, et. al., 1992), the parallel version of the 3-D Eulerian sh
wave physics code, CTH, is being written in C++ and will be portable to SIM
MIMD, and SDMD architectures by modifing lower level libraries. Moreove
Sandia development groups are using the third party product ACIS@ (ACIS, 1991)
which is written in C++, to provide solid modeling capabilities for their finite el
ment codes.

In addition to Sandia, C++ scientific programming activities exist at Northrup C
poration (Angus, 1992), University of New Mexico (Ross, Wagner and Lug
1992), University of Colorado (Quinlan, 1991), and Los Alamos (Forslund, W
gate, Ford, Junkins, and Pope, 1992).

The Computational Physics Research and Development Division at Sandia Na
al Laboratories is aggressively pursuing C++ as the language of choice for
coding efforts. We feel that we cannot meet the stringent customer requirem
and delivery schedules we now face with either FORTRAN77 or Fortran-90.

General Advantages and Disadvantages of C++
The advantages of C++ are:

Strong type checking. All variables and procedures are declared prior to their fi
use. The argument lists of procedures must match in separate compilation
These strong type checking features eliminate entire classes of program bugs
mon in FORTRAN programs.

Superior language syntax.C++ is a superset of ANSI C and shares its inheren
block-structured syntax. The language is free format in the sense that few ass
tions are made about white space. Thus, no artificial constraints on line length
continuation are imposed.

Object-oriented programming support. The definitive feature of C++ is the
class, which is an extension of the struct feature of C. A class consists of a s
data members and an enumeration of functions that have access to those data
bers. It thus enforces the concept of data encapsulation. Furthermore, it is po
to invoke the functions associated with a class object without knowing the e
type of the object; this supports polymorphism.

Superior dynamic memory management.C++ provides strong, flexible suppor
for the management of the free memory store. This is vital for codes operatin
large and flexible databases.

Operator and function overloading. C++ permits the meaning of the standar
operators to be redefined when applied to class objects. This permits unus
transparent programming syntax which is tailor-made for particular applicatio

Availability. C++ is available or is relatively easy to port to any platform that su
ports C.

The disadvantages of C++ are:
2 Peery
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Lack of an ANSI language standard.The language is very young and is sti
evolving. It will be some time before the ANSI standard is completed. Fortunat
the AT&T CFRONT translator is ade factostandard that is largely followed by
other implementations.

Poor optimization. C++ code can be very inefficient. Many of the known efficie
cy issues can be addressed by careful coding. Others will be resolved only b
development of more sophisticated compilers. We believe that C++ can ultima
become competitive with FORTRAN from an efficiency standpoint on all comp
er architectures.

C++: A Language for Mathematical Physics

C++ can be regarded as a meta-language whose dialects are portable from
platform to another. Therefore, one can tailor a particular dialect to the expres
of concepts in mathematical physics. Through this approach, one is capab
writing code that resembles the original equations. In other words, it is possib
write code that “reads like a book.” For example, given the equation

(EQ 1)

the corresponding C++ coding is written as

f = Div(T) + b;
where f and b are instances of a vector field class and T is an instance of a t
field class. It should be noted that the language does not implicitly provide
means for adding vectors but rather gives a programmer all the tools necess
define how the mathematics should be performed.

This example points out the difference between a “user” programmer and a
brary” programmer. A user programmer would program the physics as demon
ed above with Equation 1. It is the library programmer’s responsibility to deve
vector and tensor classes that encapsulate the data and functions necessary
scribe the mathematics.

Programs that model physics typically require many types of fields: scalar, ve
and tensor fields (Budge, 1991). For example, a finite element code modeling
tinuum mechanics would require scalar, vector, and tensor fields to describe
sure, displacement, and stress for each element. By developing rich class lib
for these fields that reflect consistent mathematical definitions, a user program
can simply develop his program by typing in equations. Through the strong
checking feature of the language, any inconsistences in the expressions w
flagged by the compiler. In addition, these field classes hide the bookkeeping
indices from the user programmer, thus eliminating an entire class of bugs.

In order to illustrate the power of the C++ language, consider the divergence o
stress term in Equation 1. The physicist who wants to model this phenome
most interested in the internal force field and is least interested in the topolog
the problem. If the physicist is given symmetric tensor fields defined for pres
points (element centers) and vector fields defined at displacement points (ele
vertices), he can find the internal force field by rotating the stress to the cu
configuration and finding its divergence. This is given as

f T∇• b+=
3 Peery
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VectorField BlockSpec::InternalForce()
{
// Rotate stress to current configuration

SymTensorField Rotated_Stress =
Sym(Rotation * Stress *

Trans(Rotation));
VectorField InForce = Div(Rotated_Stress,

 CurCoor);
  return InForce;
}
This sort of code is easy for a physicist to understand and to modify. The lib
classes themselves are “black boxes” so far as the physicist is concerned; he
rarely will need to know anything about their internal workings. Note, that
above example does not provide any information about the dimensionality o
pology of problem; it simply replicates a portion of Equation 1. Of course, the l
guage cannot prevent bugs introduced by incorrect equations.

C++ Efficiency Issues

Programming in terms of objects is not without its drawbacks. C++ impleme
tions are notorious for inefficiencies in memory and execution speed. This is
ticularly true for scientific programming since overloading operators will
desired. In these types of member functions, C++ is a “memory hog.” For exam
consider a matrix class with overloaded + and * operators and the following
pression:

Matrix B(rows, cols);
Matrix C(rows, cols);
Matrix D(rows, cols);
Matrix A;

A = B + C * D

where A, B, and C are matrices. Using overloaded operators, this expression
result in three unnecessary assignments and two temporary matrices (P
Budge, Robinson, and Witney, 1991). In general, every overloaded operator o
right hand side of an expression requires a temporary. For large memory ob
the creation of temporaries could severely limit the complexity of expressions.
er it will be shown that allocating memory can be very expensive in terms of C
cycles and therefore, the creation of temporaries should be avoided.

We have implemented two methods to control the creation of temporaries: r
ence counting and container classes.

Reference Counting
Reference counting (Coplien, 1992) basically eliminates the creation of objec
copy constructors and overloaded = operator. Reference counting can be im
4 Peery
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mented in a class by adding an integer pointer to the private data of a class.
reference counting, unnecessary assignment operations are eliminated but on
temporary is eliminated. Reference counting will only eliminate one temporary
expression and thus it would be more memory efficient to program the matrix
pression as

A = C * D;
A += B;

The programming style shown above eliminates temporaries and unnecessa
signment operations.

Container Classes
For some computer architectures such as the CRAY YMP, dynamic memory
cation can be very time consuming. One method of eliminating inefficiencies a
ciated with allocating and deallocating memory is to develop a class that man
its own data. Classes that manage themselves are called container classes (C
1992). The general rule of container classes is to never deallocate memory th
been allocated. For example, in a series of operations, temporary objects are
ed and deleted. Most of the inefficiency in this process results from user spec
data segment allocation and deallocation (we are not concerned with the alloc
and deallocation of an instance of an object). Within a container class, when m
ory is needed for the data segment of the class, the class first looks at its
store” to see if memory is already allocated. If not, the new object allocates me
ry from the heap. When an object is deleted, its data segment is returned t
“free store” for the class. At some point in the execution of the program, the m
mum amount of memory required for the problem is reached and the conta
class will cease to request memory from the heap.

In order to test the effects of the container class concept on the efficiency of C+
very simple test case was developed and is shown below.

Matrix a(len);
Matrix b(len);
Matrix c;
for(register i=0;i < max_iterations; i++) {

c = a + b;
}
This test case was programmed in FORTRAN, C, and C++ and run on a
SparcStation II, single processor CRAY YMP, and a single processor nCUBE.
test case was intentionally kept simple to determine if C++ could be made as
cient as FORTRAN. Since C++ is translated to C by AT&T CFRONT before it
compiled, equivalent C coding was developed to determine the optimization
could be achieved on the mangled code that AT&T CFRONT produces.
nCUBE C++ executables were generated with the GNU g++ compiler. The pe
mances of the three different codes on the different architectures are given in
1. Each code was compiled with the most aggressive compiler optimizations a
able. Different timings are given for C++ with reference counting (rc) and C
with reference counting and container classes (rc and mm).
5 Peery
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Table1 shows that C++ coding performed well against FORTRAN and C cod
under the conditions that one develops classes that use reference counting an
form their own memory management. However, the default C++ timings dem
strate the extent of inefficiency that can result from basic C++ programming
contrast, the C++ coding generated for the nCUBE used vendor supported li
functions to perform the “+” and “=” operations on the arrays which produced
times faster coding than FORTRAN. Although this is a simple code segment
feel that this is a fair comparison because the change was made only in the m
library and thus would be inherited in every place that a more complex code
the overloaded function. By developing code in C++, optimization made in a c
function is realized in every portion of the code that uses the member functio
other words, the user code does not have to be modified. In a FORTRAN code
optimization would have to be replicated in every location that the operation is
formed.

Notice in Table 1 that the FORTRAN coding achieved almost peak performa
for a single functional unit on a CRAY Y-MP (166 MFlops). Because the CRAY
MP has two functional units, with chaining the peak performance is 333 MFlo
Currently, we do not know of a method in the current C++ language definition
obtain chaining when overloaded operators are used. For chaining to work
these types of functions, the CRAY C compiler would not only have to comb
loops but also eliminate the memory allocation and deallocation calls that ap
between the loops for temporary object creation and destruction. Reference c
ing helps these operations to be memory efficient but it does not eliminate ma
operations that occur between the loops. If C++ allowed for overloading tern
operators, chaining could be achieved.

Suggestions for Compiler Improvements

Consider again the expression analyzed earlier:

A = B + C * D;
This expression can be optimized by operator substitution. A good optimiz
compiler could replace the original parse tree with an optimized parse tre
shown in Figure 1. The obvious advantage is that no temporaries are used. A

Table 1: CPU time (seconds) for matrix test case (rank 100, 10,000 iteratio

Language SUN
CRAY

(MFlops)
nCUBE

(Vendor Libraries)

FORTRAN 110.1 0.71 (140) 185.8 (no)

C 108.4 0.77 (130) 150.8 (no)

C++ (default) 328.5 2.43 (41) 458.9 (yes)

C++ (rc) 131.9 1.06 (94) 82.8 (yes)

C++ (rc and mm) 130.4 0.83 (121) 81.4 (yes)
6 Peery
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obvious but equally important advantage is that no constructors or destructor
called between operations. Because no constructor/destructor calls separate
erations, a compiler that can inline loops can also chain the operations toge
This implies performance near the theoretical maximum.

Figure 1. Example of Parse Tree Optimization

However, a number of assumptions are made when transforming the parse t
this manner. These assumptions are:

1) The operations A=A*D and A*=D are equivalent.
2) The operations A=A+B and A+=B are equivalent.
3) The + operator commutes.

Note that these assumptions are true of both real numbers and of the Matrix
we described earlier. However, while a C++ compiler is allowed to make these
sumptions about real numbers, no construct in the C++ language permits the
piler to make such assumptions about a user-defined class. An extre
intelligent compiler might be able to decide whether such assumptions are
from the definition of the class and its inline operators; but such compilers
years away if they can be written at all. We feel that it would be advantageou
invent new C++ language constructs to inform compilers of which such comm
assumptions apply to the operators of a given class. For the present, such
structs might take the form of new #pragma directives.

Conclusion

In the above discussion, it has been shown that C++ can perform efficiently
scientific programing language. In order for C++ to be efficient, C++ library p
grammers will have to be aware of the cost of creating temporaries and utilize
vendor specific optimizations that may exist. By using C++ as the programm
language, a code project can have asingleuser code that links with specialized li
braries which seek to achieve the peak performance of a particular vendor’s a
tecture. Lastly, we believe that with the features of C++, scientific programs ca
developed in less time with fewer defects than with any other language.

C D
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+
tmp2A
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A C

= D

*= B
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Original Parse Tree Optimized Parse Tree
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